Advanced Design System 2002 Circuit Components Sources February 2002 #### **Notice** The information contained in this document is subject to change without notice. Agilent Technologies makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material. #### Warranty A copy of the specific warranty terms that apply to this software product is available upon request from your Agilent Technologies representative. #### **Restricted Rights Legend** Use, duplication or disclosure by the U. S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 for DoD agencies, and subparagraphs (c) (1) and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 for other agencies. Agilent Technologies 395 Page Mill Road Palo Alto, CA 94304 U.S.A. Copyright © 2002, Agilent Technologies. All Rights Reserved. # **Contents** | 1 | Sources, Controlled | | |---|--|------| | | CCCS (Linear Current-Controlled Current Source) | 1-2 | | | CCCS_Z (Current-Controlled Current Source, Z-Domain) | 1-4 | | | CCVS (Linear Current-Controlled Voltage Source) | 1-6 | | | CCVS_Z (Current-Controlled Voltage Source, Z-Domain) | 1-8 | | | VCCS (Linear Voltage-Controlled Current Source) | 1-10 | | | VCCS_Z (Voltage-Controlled Current Source, Z-Domain) | 1-12 | | | VCVS (Linear Voltage-Controlled Voltage Source) | | | | VCVS_Z (Voltage-Controlled Voltage Source, Z-Domain) | 1-16 | | 2 | Sources, Frequency Domain | | | | I AC (AC current source) | 2-2 | | | I DC (DC current source) | | | | I_1Tone (Current Source, Single Frequency) | 2-4 | | | I nTone (Current Source, N Frequencies and Amplitudes) | | | | I_nHarm (Current Source, Fundamental Frequency with N-Harmonics) | 2-8 | | | I_HB_Dataset (Current Source, HB Dataset Variable) | 2-10 | | | I_SpectrumDataset (Current Source, Frequency Spectrum Defined in Dataset) | 2-11 | | | OSCwPhNoise (Oscillator with Phase Noise) | 2-13 | | | P_AC (AC Power Source) | 2-15 | | | P_1Tone (Power Source, Single Frequency) | 2-16 | | | P_nHarm (Power Source, Fundamental Frequency with N-Harmonics) | | | | P_nTone (Power Source, N Frequencies and Power Levels) | | | | P_SpectrumDataset (Power Source, Frequency Spectrum Defined in Dataset) | | | | V_1Tone (Voltage Source, Single Frequency) | 2-25 | | | V_AC (AC Voltage Source) | | | | V_DC (DC Voltage Source) | | | | V_nHarm (Voltage Source, Fundamental Frequency with N-Harmonics) | | | | V_nTone (Voltage Source, N Frequencies and Amplitudes) | | | | V_SpectrumDataset (Voltage Source, Frequency Spectrum Defined in Dataset) | | | | Vf_BitSeq (Fourier Transform of Bit Sequence Waveform) | | | | Vf_Pulse (Voltage Source, Fourier Series Expansion of Period Pulse Wave) | | | | Vf_Sawtooth (Voltage Source, Fourier Series Expansion of Periodic Sawtooth) | | | | Vf_Square (Voltage Source, Fourier Series Expansion of Period Square Wave) | | | | Vf_Triangle (Voltage Source, Fourier Series Expansion of Period Triangle Wave) | | | | V_HB_Dataset (Voltage Source, HB Dataset Variable) | 2-44 | | 3 | Sources, Modulated | | | | PtRF_CDMA_ESG_FWD | | | | PtRF_CDMA_ESG_REV | 3-4 | | | | | | | PtRF_CDMA_IS95_FWD | | |---|---|------| | | PtRF_CDMA_IS95_REV | | | | PtRF_DECT (RF Carrier Modulated by DECT Signal) | 3-10 | | | PtRF_GSM (Power Source, RF Carrier Modulated by GSM Signal) | 3-11 | | | PtRF_NADC (Power Source, RF Carrier Modulated by NADC Signal) | 3-12 | | | PtRF_PHS (Power Source, RF Carrier Modulated by PHS Signal) | 3-14 | | | PtRF_Pulse (Power Source, RF Pulse Train) | 3-15 | | | PtRF_Step (Power Source, RF Step) | 3-17 | | | VtRF_Pulse (Voltage Source, RF Pulse) | 3-19 | | | VtRF_Step (Voltage Source, RF Step) | 3-21 | | 4 | Sources, Noise | | | | I Noise (Noise Current Source) | 4-2 | | | I NoiseBD (Bias-Dependent Noise Current Source) | 4-3 | | | NoiseCorr (Noise Source Correlation) | 4-5 | | | Noisy2Port (Linear Noisy 2-Port Network) | 4-6 | | | V Noise (Noise Voltage Source) | 4-7 | | | V_NoiseBD (Bias-dependent Noise Voltage Source) | 4-9 | | 5 | Sources, Time Domain | | | | ClockWjitter (Current Source: Clock with Jitter) | 5-2 | | | I_DC (DC current source) | 5-3 | | | ItDataset (Current Source, Time Domain Waveform Defined in Dataset) | 5-4 | | | ItExp (Current Source, Exponential Decay) | | | | ItPulse (Current Source, Pulse with Linear, Cosine or Error Function Edge Shape) | 5-8 | | | ItPWL (Current Source, Piecewise Linear) | 5-11 | | | ItSFFM (Current Source, Decaying Single-Frequency FM Wave) | 5-12 | | | ItSine (Current Source, Decaying Sine Wave) | 5-13 | | | ItStep (Current Source, Step) | 5-14 | | | ItUserDef (Current Source, User-Defined) | 5-15 | | | V_DC (DC Voltage Source) | 5-16 | | | VtBitSeq (Voltage Source, Pseudo Random Pulse Train Defined at Continuous Time by Bit | | | | Sequence) | | | | VtDataset (Voltage Source, Time Domain Waveform Defined in Dataset) | 5-18 | | | VtExp (Voltage Source, Exponential Decay) | | | | VtImpulseDT (Voltage Source, Impulse Train Defined at Discrete Time Steps) | | | | VtLFSR_DT (Voltage Source, Pseudo-Random Pulse Train Defined at Discrete Time Steps) | | | | VtOneShot (Voltage Source, Retriggerable Pulse Train) | 5-29 | | | VtPulse (Voltage Source, Pulse with Linear, Cosine, or Error Function Edge Shape) | | | | VtPulseDT (Voltage Source, Pulse Train Defined at Discrete Time Steps) | | | | VtPWL (Voltage Source, Piecewise Linear) | | | | VtRetrig (Voltage Source, Retriggerable, User-Defined Waveform) | | | | VtSFFM (Voltage Source, Single Frequency FM, SFFM Wave) | 5-37 | | VtSine (Voltage Source, Decaying Sine Wave) | 5-38 | |---|------| | VtStep (Voltage Source, Step) | 5-39 | | VtUserDef (Voltage Source, User-Defined) | 5-40 | | Index | | # **Chapter 1: Sources, Controlled** # **CCCS (Linear Current-Controlled Current Source)** # **Symbol** #### **Parameters** G = complex current gain; for example, polar(10,45), or $P(j \times omega)/Q(j \times omega)$ R1 = input resistance, in ohms R2 = output resistance, in ohms F = frequency at which current gain magnitude is down by 3 dB, in hertz T = time delay associated with current gain, in seconds # Range of Usage For ideal current source use the following settings: | Setting | Result | |---------|--------------| | F = 0 | $F = \infty$ | | T = 0 | T = 0 | | R1 = 0 | R1 = 0 | | R2 = 0 | R2 = ∞ | - 1. This is a purely linear, dependent source model. Nonlinear controlled sources are available in the Nonlinear Devices library. - 2. This source is assumed to be noiseless. 3. $$\beta(f) = G \times \frac{e^{-j(2\pi fT)}}{1 + j(f/F)}$$ (for F > 0) $$\beta(f) = G \times e^{-j(2\pi fT)}$$ (for F = 0) #### where f = simulation frequency in hertz F = reference frequency in hertz T = CCCS time delay in seconds $\beta(f)$ = frequency-dependent current gain - 4. For time-domain analysis, the frequency-domain analytical model is used. - 5. This source has no default artwork associated with it. # CCCS_Z (Current-Controlled Current Source, Z-Domain) #### **Symbol** #### **Parameters** Gain = constant gain term Num = numerator coefficients of transfer function Den = denominator coefficients of transfer function TimeStep = sampling time period #### Range of Usage N/A # Notes/Equations/References 1. This model is a current source whose output is linearly proportional to its short circuit input current. It is similar to the CDCS model; instead of specifying the current gain transfer function Ai as a function of frequency, this model allows the transfer function to be defined as a rational polynomial in the Z-Domain. This model can be used in all analysis modes, but becomes especially efficient in the transient and circuit envelope time-domain modes where direct recursive convolution is used instead of inverse FFT convolution. In other modes, the rational polynomial is simply evaluated at $$z^{-1} = e^{-j \times 2\pi \times freq \times TStep}$$, where $freq$ is the analysis frequency. The transfer function is $$Ai(z) = \frac{Iout(z)}{Iin(z)} = Gain \times \frac{a_0 + a_1 \times z^{-1} + \dots + a_{M-1} \times z^{M-1} + a_M \times z^{-M}}{b_0 + b_1 \times z^{-1} + \dots + b_{N-1} \times z^{N-1} + b_N \times z^{-N}}$$ The a_i coefficients are defined by the Num parameter list, which can be created by either a LIST ARRAY equation or a DATASET ARRAY equation. a_0 is first in the list and a_M is - last. Similarly, the b_i coefficients are defined by the Den parameter list. The value if b0 must not be 0. If the Den parameter is not given, it is assumed to equal 1.0. - 2. The Gain parameter must be a constant and must not depend on frequency. It, and the polynomial coefficients, should not be complex valued. - 3. The TStep parameter determines the unit delay time of each z-1 block, and, in a sampled system, would correspond to the sampling interval. The input to this transfer function is not automatically sampled in this model. For a sampled signal, preface this model with either the sample-hold or sampler model. Note that the frequency response of the Z-Domain transfer function is cyclical and repeats every 1/TStep Hertz. - 4. In circuit envelope simulation, only the baseband spectral component is filtered by the transfer function. # **CCVS (Linear Current-Controlled Voltage Source)** # **Symbol** #### **Parameters** G = complex transresistance; for example, polar(10,45) or $P(j \times omega)/Q(j \times omega)$ R1 = input resistance, in ohms R2 = output resistance, in
ohms F = frequency at which transresistance magnitude is down by 3dB, in hertz T = time delay associated with transresistance, in seconds #### Range of Usage For ideal current source use the following settings: | Setting | Result | |---------|--------------| | F = 0 | $F = \infty$ | | T = 0 | T = 0 | | R1 = 0 | R1 = 0 | | R2 = 0 | R2 = 0 | - 1. This is a purely linear, dependent source model. Nonlinear controlled sources are available in the Nonlinear Devices library. - 2. This source is assumed to be noiseless. 3. R(f) = G × $$\frac{e^{-j(2\pi fT)}}{1+j(f/F)}$$ (for F > 0) $$R(f) = G \times e^{-j(2\pi fT)} \quad \text{(for F = 0)}$$ #### where R(f) = frequency-dependent transresistance f = simulation frequency in hertz F = reference frequency in hertz T = CCVS time delay in seconds - 4. For transient analysis, the transresistance is independent of frequency, and there is no phase shift or time delay associated with the transresistance. - 5. For convolution analysis, the frequency-domain analytical model is used. - 6. This source has no default artwork associated with it. #### CCVS Z (Current-Controlled Voltage Source, Z-Domain) #### **Symbol** #### **Parameters** Gain = constant gain term Num = numerator coefficients of transfer function Den = denominator coefficients of transfer function TimeStep = sampling time period #### Range of Usage N/A # Notes/Equations/References 1. This model is a voltage source whose output is linearly proportional to its short circuit input current. Similar to the CDVS model, instead of specifying the transfer function Z21 as a function of frequency, this model allows the transfer function to be defined as a rational polynomial in the Z-Domain. This model can be used in all analysis modes, but becomes especially efficient in the transient and circuit envelope time-domain modes where direct recursive convolution is used instead of inverse FFT convolution. In the other modes, the rational polynomial is simply evaluated at $$z^{-1} = e^{-j \times 2\pi \times freq \times TStep}$$ where freq is the analysis frequency. The transfer function is $$Z21(z) = \frac{Vout(z)}{Iin(z)} = Gain \times \frac{a_0 + a_1 \times z^{-1} + \dots + a_{M-1} \times z^{M-1} + a_M \times z^{-M}}{b_0 + b_1 \times z^{-1} + \dots + b_{N-1} \times z^{N-1} + b_N \times z^{-N}}$$ The a_i coefficients are defined by the Num parameter list, which can be created by either a LIST ARRAY equation or a DATASET ARRAY equation. a_0 is first in the list and a_M is - last. Similarly, the b_i coefficients are defined by the Den parameter list. The value if b0 must not be 0. If the Den parameter is not given, it is assumed to equal 1.0. - 2. The Gain parameter must be a constant and not depend on frequency. It, and the polynomial coefficients, should not be complex valued. - 3. The TimeStep parameter determines the unit delay time of each z^{-1} block and, in a sampled system, would correspond to the sampling interval. The input to this transfer function is not automatically sampled in this model. For a sampled signal, preface this model with either the sample-hold or sampler model. Note that the frequency response of the Z-Domain transfer function is cyclical and repeats every 1/TStep Hertz. - 4. In circuit envelope simulation, only the baseband spectral component is filtered by the transfer function. # VCCS (Linear Voltage-Controlled Current Source) #### **Symbol** #### **Parameters** G = complex transconductance; for example, polar(15,45), or $P(j \times omega)/Q(j \times omega)$ R1 = input resistance, in ohms R2 = output resistance, in ohms F = frequency at which transconductance magnitude is down by 3dB, in hertz #### Range of Usage | Setting | Result | |---------|---------------| | F = 0 | $F = \infty$ | | T = 0 | T = 0 | | R1 = 0 | $R1 = \infty$ | | R2 = 0 | R2 = ∞ | - 1. This is a purely linear, dependent source model. Nonlinear controlled sources are available in the Nonlinear Devices library. - 2. This source is assumed to be noiseless. 3. G(f) = G × $$\frac{e^{-j(2\pi fT)}}{1+j(f/F)}$$ (for F \neq 0) $$G(f) = G \times e^{-j(2\pi fT)}$$ (for F = 0) #### where f = simulation frequency in hertz F = reference frequency in hertz T = VCCS time delay in seconds G(f) = frequency-dependent transconductance - 4. For time-domain analysis, the frequency-domain analytical model is used. - 5. This component has no default artwork associated with it. # VCCS Z (Voltage-Controlled Current Source, Z-Domain) #### **Symbol** #### **Parameters** Gain = constant gain term Num = numerator coefficients of transfer function Den = denominator coefficients of transfer function TimeStep = sampling time period #### Range of Usage N/A # Notes/Equations/References 1. This model is a voltage source whose output is linearly proportional to its short circuit input current. Similar to the CDVS model, instead of specifying the transfer function Z21 as a function of frequency, this model allows the transfer function to be defined as a rational polynomial in the Z-Domain. This model can be used in all simulations, but becomes especially efficient in the transient and circuit envelope time-domain modes where direct recursive convolution is used instead of inverse FFT convolution. In the other modes, the rational polynomial is simply evaluated at $$z^{-1} = e^{-j \times 2\pi \times freq \times TStep}$$, where $freq$ is the analysis frequency. The transfer function is $$Z21(z) = \frac{Vout(z)}{Iin(z)} = Gain \times \frac{a_0 + a_1 \times z^{-1} + \dots + a_{M-1} \times z^{M-1} + a_M \times z^{-M}}{b_0 + b_1 \times z^{-1} + \dots + b_{N-1} \times z^{N-1} + b_N \times z^{-N}}$$ The a_i coefficients are defined by the Num parameter list, which can be created by either a LIST ARRAY equation or a DATASET ARRAY equation. - a_0 is first in the list and a_M is last. Similarly, the b_i coefficients are defined by the Den parameter list. The value if b0 must not be 0. If the Den parameter is not given, it is assumed to equal 1.0. - 2. The Gain parameter must be a constant and not depend on frequency. It, and the polynomial coefficients, should not be complex valued. - 3. The TimeStep parameter determines the unit delay time of each z⁻¹ block, and, in a sampled system, would correspond to the sampling interval. The input to this transfer function is not automatically sampled in this model. - For a sampled signal, preface this model with either the sample-hold or sampler model. Note that the frequency response of the Z-Domain transfer function is cyclical and repeats every 1/TStep Hertz. - The default value for TimeStep is *timestep*, which is a global variable. If using Circuit Envelope analysis, it is set using the Tstep parameter. For AC simulation, Timestep is zero. - 4. In circuit envelope analysis, only the baseband spectral component is filtered by the transfer function. # **VCVS (Linear Voltage-Controlled Voltage Source)** # **Symbol** #### **Parameters** G = complex voltage gain; for example, polar(10,45), or $P(j \times omega)/Q(j \times omega)$ R1 = input resistance, in ohms R2 = output resistance, in ohms F = frequency at which voltage gain magnitude is down by 3 dB, in hertz #### Range of Usage | Setting | Result | |---------|--------------| | F = 0 | $F = \infty$ | | T = 0 | T = 0 | | R1 = 0 | R1 = ∞ | | R2 = 0 | R2 = 0 | - 1. This is a purely linear, dependent source model. Nonlinear controlled sources are available in the Nonlinear Devices library. - 2. This component is assumed to be noiseless. - 3. Voltage gain = $$\mu(\mathbf{f}) = \mathbf{G} \times \frac{e^{-j(2\pi fT)}}{1 + j\frac{f}{F}} \quad \text{(for } \mathbf{F} \neq \mathbf{0}\text{)}$$ $$\mu(f) = G \times e^{-j(2\pi fT)}$$ (for F = 0) #### where f = simulation frequency in hertz F = reference frequency in hertz T = VCVS time delay in seconds $\mu(f)$ = frequency-dependent voltage gain - 4. For time-domain analysis, the frequency-domain analytical model is used. - 5. This component has no default artwork associated with it. # VCVS Z (Voltage-Controlled Voltage Source, Z-Domain) #### **Symbol** #### **Parameters** Gain = constant gain term Num = numerator coefficients of transfer function Den = denominator coefficients of transfer function TimeStep = sampling time period #### Range of Usage N/A # Notes/Equations/References 1. This model is a voltage source whose output is linearly proportional to its open circuit input voltage. Similar to the VDVS model, instead of specifying the voltage gain transfer function *Av* as a function of frequency, this model allows the transfer function to be defined as a rational polynomial in the Z-Domain. This model is usable in all analysis modes, but becomes especially efficient in the transient and circuit envelope time-domain modes, where direct recursive convolution is used instead of inverse FFT convolution. In the other analysis modes, the rational polynomial is simply evaluated at $$z^{-1} = e^{-j \times 2\pi \times freq \times TSAM}$$, where $freq$ is the analysis frequency. The transfer function is $$Av(z) = \frac{Vout(z)}{Vin(z)} = Gain \times \frac{a_0 + a_1 \times z^{-1} + \dots + a_{M-1} \times z^{M-1} + a_M \times z^{-M}}{b_0 + b_1 \times z^{-1} + \dots + b_{N-1} \times z^{N-1} + b_N \times z^{-N}}$$ The a_i coefficients are defined by the Num parameter list, which can be created by either a LIST ARRAY equation or a DATASET ARRAY equation. - a₀ is first in the list and a_M is last. Similarly, the b_i coefficients are defined by the Den parameter list. The value if b_0 must not be 0. If the Den parameter is not given, it is assumed to equal 1.0. - 2. The Gain parameter must be a constant and must not depend on frequency. It, and the polynomial coefficients, should not be complex valued. - 3. The TimeStep parameter determines the unit delay time of each z⁻¹ block, and, in a sampled system, would correspond to the sampling interval. The input to this transfer function is not automatically sampled in this model. - For a
sampled signal, preface this model with either the sample-hold or sampler model. Note that the frequency response of the Z-Domain transfer function is cyclical and repeats every 1/TStep Hertz. - The default value for TimeStep is *timestep*, which is a global variable. If using Circuit Envelope analysis, it is set using the Tstep parameter. For AC simulation, Timestep is zero. - 4. In circuit envelope analysis, only the baseband spectral component is filtered by the transfer function # **Chapter 2: Sources, Frequency Domain** A frequency domain source generates a periodic waveform or a superposition of periodic waveforms. Frequency domain sources are often used as stimuli to find the steady-state response of a circuit. Independent voltage sources, current sources, and power source are provided in Advanced Design System. Power sources have built-in impedances that can also be used as reference impedance for S-parameter simulation. Frequency domain sources can be used in all simulations. In S-parameter simulation, voltage sources are treated as short circuits, current sources are treated as open circuits, and power sources are treated as impedances. Amplitudes in frequency domain sources can be set to complex values such as $V = Re + j \times Im$, I=polar (Mag, Angle), P=polar(dbm tow(dBm), Angle). When these sources are used in baseband transient simulation, only the real part of the signal is used, the imaginary part is dropped. # **I_AC** (AC current source) #### **Symbol** #### **Parameters** None # Range of Usage N/A - 1. I_AC is an ideal ac current source. Positive current flows into the source at pin 1 and out of the source at pin 2. - 2. This source is used in all simulations. When not in use, it is treated as an open circuit. # **I_DC** (DC current source) # **Symbol** #### **Parameters** Idc = dc current Iac = ac current; value used for ac analysis only #### Range of Usage N/A - 1. I DC is an ideal dc current source. Positive current flows into the source at pin 1 and out of the source at pin 2. - 2. This source is used in all simulations. When not in use, it is treated as an open circuit. # **I_1Tone** (Current Source, Single Frequency) #### **Symbol** #### **Parameters** I = current at center frequency Freq = center frequency I_USB = current of upper sideband small signal tone; value used for small-signal mixer simulation I_LSB = current of lower sideband small-signal tone; value used for small-signal mixer simulation Idc = dc current Iac = ac current; value used for ac analysis FundIndex = frequency index; an alternate way of specifying center frequency, used in MDS Other = output string to netlist #### Range of Usage Freq > 0 #### Notes/Equations/References 1. This current source is defined by its frequency and its current and can be used in all simulations. The phase of the source is specified by a complex value I, such as I=polar(1mA, 45). For ac simulations, only Iac is used—all other parameters are ignored. When frequency conversion ac analysis is performed, the Freq parameter is used to set the frequency of the source. For harmonic balance and envelope, the Freq parameter identifies the closest analysis frequency. If the frequency is not close enough, a warning is generated and the source current is set to 0 for that analysis. In envelope analysis, the frequency difference can be up to 0.5/timestep and the given frequency is still properly generated. This source can also be used in transient analysis to generate an arbitrary waveform at the specified carrier frequency. When this source represents a real only, baseband current (that is, transient or the baseband part of an envelope signal), then only the real part of the signal is generated. Otherwise, the full complex value of I is used to define both the amplitude and phase relationships. - 2. For time-domain analyses, transient and envelope, the I current parameter can be an expression of time. When a source with a time varying expression is used in a steady-state analysis such as harmonic balance, then its value at time=0 is used. Care must be exercised if the I current parameter is a function of frequency, since this is not fully supported in all analysis modes. - 3 A dc term can be defined on this device - 4. In small signal mixer simulation, the simulator sets the operating point of the circuit using the carrier signal alone as the source. The two sidebands must be set such that they have no effect on the operating point of the circuit. - 5. Positive current flows into pin 1 and out of pin 2. # I_nTone (Current Source, N Frequencies and Amplitudes) #### Symbol #### **Parameters** Freq = Nth frequency tone I = Nth tone amplitude Idc = dc component Iac = ac current; value used for ac analysis only Other = output string to netlist #### Range of Usage Freq > 0 # Notes/Equations/References 1. This current source can have an arbitrary number $(1 \le N < \infty)$ of harmonically independent tones, and can be used in all simulations. The phase of each tone is specified by a complex I value such as I=polar(1mA, 45). For ac simulations, only Iac is used—all other parameters are ignored. When frequency conversion ac analysis is performed, the Freq parameter is used to set the frequency of the source. For harmonic balance and envelope, the Freq parameter identifies the closest analysis frequency. If the frequency is not close enough, a warning is generated and the source current is set to 0 for that analysis. In envelope analysis, the frequency difference can be up to 0.5/timestep and the given frequency is still properly generated. This source can also be used in transient analysis to generate an arbitrary waveform at the specified carrier frequency. When this source represents a real only, baseband current (that is, transient or the baseband part of an envelope signal), then only the real part of the signal is generated. Otherwise, the full complex value of I is used to define both the amplitude and phase relationships. - 2. For time-domain analyses, transient and envelope, the I current parameter can be an expression of time. When a source with a time varying expression is used in a steady-state analysis such as harmonic balance, then its value at time=0 is used. Care must be exercised if the I current parameter is a function of frequency, since this is not fully supported in all analysis modes. - 3. A dc term can be defined on this device. - 4. In small signal mixer simulation, the simulator sets the operating point of the circuit using the carrier signal alone as the source. The two sidebands must be set such that they have no effect on the operating point of the circuit. - 5. Positive current flows into pin 1 and out of pin 2. # I nHarm (Current Source, Fundamental Frequency with N-Harmonics) # Symbol #### **Parameters** Freq = fundamental frequency I = Nth harmonic amplitude Idc = dc component Iac = ac current; value used for ac analysis only FundIndex = frequency index; an alternate way of specifying fundamental frequency used in MDS Other = output string to netlist #### Range of Usage Freq > 0 ## Notes/Equations/References 1. This current source has a fundamental frequency component and N harmonics of the fundamental frequency, where $I \le N < \infty$. The phase of each harmonic is specified by a complex I, such as I=polar(1mA, 45). For ac simulations, only Iac is used—all other parameters are ignored. When frequency conversion ac analysis is performed, the Freq parameter is used to set the frequency of the source. For harmonic balance and envelope, the Freq parameter identifies the closest analysis frequency. If the frequency is not close enough, a warning is generated and the source current is set to 0 for that analysis. In envelope analysis, the frequency difference can be up to 0.5/timestep and the given frequency is still properly generated. This source can also be used in transient analysis to generate an arbitrary waveform at the specified carrier frequency. When this source represents a real only, baseband current (that is, transient or the baseband part of an envelope signal), then only the real part of the signal is generated. - Otherwise, the full complex value of I is used to define both the amplitude and phase relationships. - 2. For time-domain analyses, transient and envelope, the I current parameter can be an expression of time. When a source with a time varying expression is used in a steady-state analysis such as harmonic balance, then its value at time=0 is used. Care must be exercised if the I current parameter is a function of frequency, since this is not fully supported in all analysis modes. - 3. A dc term can be defined on this device. - 4. In small signal mixer simulation, the simulator sets the operating point of the circuit using the carrier signal alone as the source. The two sidebands must be set such that they have no effect on the operating point of the circuit. - 5. Positive current flows into pin 1 and out of pin 2. # **I_HB_Dataset** (Current Source, HB Dataset Variable) # **Symbol** #### **Parameters** Dataset = Dataset filename Variable = Dataset variable (string and reference or file-based) Idc =DC component (default: 0 mA) Iac = AC current, use polar () for phase (default: polar(1,0) mA) # I SpectrumDataset (Current Source, Frequency Spectrum Defined in Dataset) #### Symbol #### **Parameters** Dataset = dataset name Expression = dataset variable or expression Freq = fundamental frequency #### Range of Usage N/A - 1. Each dataset-based source has these fields: - A field Dataset, for the name of the dataset. - A field Expression, for an expression or a dataset variable. The values of this expression will be used as the harmonics for this source. - A field Freq for the fundamental frequency of this source. - 2. The frequency of the fundamental is specified on this source. It is not affected by the actual value of the fundamental associated with the harmonic data in a dataset. - 3. Expression must
evaluate to a one-dimensional array with two or more entries. The entries in this array are interpreted as dc, fundamental, second harmonic, third harmonic, etc. There cannot be gaps in the list of harmonics; if the list of harmonics includes the 6th harmonic, harmonics 0-5 must be present. - 4. Because no interpolation or extrapolation is done by the system, the harmonic data must be single-dimensional. While multi-dimensional data is handled for dataset variables, it is not handled for this source. - 5. The harmonic values must be numeric and can be given as real (integer) or complex values. If given as real values, they will be converted to complex (zero imaginary part) before being used in a simulation. - 6. The designer must ensure the rationality of the expression that is used. If an expression is used that actually evaluates to a value of resistance, the system has no way of detecting this, and will treat these resistance values as harmonics in a harmonic balance simulation. - 7. The independent data extracted from the design system expression will be ignored; only the dependent data will be used, and it will be treated as harmonics. The independent data is ignored so that the source can be frequency shifted (the fundamental value can be changed to something other than that associated with the harmonics in a dataset). # **OSCwPhNoise (Oscillator with Phase Noise)** # Symbol #### **Parameters** Freq = frequency P = output power Rout = output resistance PhaseNoise = phase noise data #### Range of Usage All phase noise dBc values should be less than -10 # Notes/Equations/References - 1. In Circuit Envelope simulation, the output power P of OscwPhNoise represents the total power output from this source over the entire simulation bandwidth. This implies that the phase noise level specified in this source should be small enough with respect to this total power such that the specified phase noise level below the carrier signal can be maintained without violating the conservation of total power. In the event that this specified phase noise is too high, the overall power output from this source will be fixed at P, and the phase noise level and the carrier signal power from the source will be adjusted by the program to be different from the levels specified in order to maintain the total power over the bandwidth to be P - 2. OSCwPhNoise can be used in harmonic balance and circuit envelope simulations—it is not recommended for transient simulation. A harmonic balance simulation example is shown in Figure 2-1 and Figure 2-2. Figure 2-1. Harmonic Balance Setup PhaseNoise=list(10Hz,-20dB, 100Hz,-40dB, 1KHz,-50dB) Figure 2-2. Harmonic Balance Noise Simulation Results # P AC (AC Power Source) ### Symbol #### **Parameters** Temp = element temperature in degrees Celsius. Default equals the circuit ambient temperature ### Range of Usage N/A - 1. P AC is an ac power source used for ac simulation. When not in use it is treated as an impedance. - 2. This parameter only affects the amount of noise generated by the port. If the Noise parameter equals yes, the amount of noise generated is based on this temperature. This parameter is not used on the input and output ports when computing noise figure, as the noise figure definition requires the input port temperature to be 290K and the output port is noiseless # P 1Tone (Power Source, Single Frequency) # **Symbol** #### **Parameters** Num = port number Z =source impedance P = power at center frequency Freq = center frequency P_USB = power of upper sideband small-signal tone; value used for small- signal mixer simulation P_LSB = power of lower sideband small-signal tone; value used for small- signal mixer simulation Mod = modulation function Noise = enable/disable port thermal noise: yes or no Pac = ac power; value used for ac simulation FundIndex = frequency index; an alternate way of specifying center frequency, used in MDS Vdc = open circuit dc voltage Other = output string to netlist Temp = element temperature in degrees Celsius. Default equals the circuit ambient temperature ### Range of Usage N/A - 1. The phase of the source is specified by a complex value P such as P=polar(dBmtow(0), 45). The same applies to P USB and P LSB. The unit for power is W, mW, and so on; dBm must be converted to W by using dBmtoW(). - 2. This power source is defined by its frequency, power, impedance, and linear modulation. It can be used in all circuit simulations. - For ac analysis, only Z and Pac are used—all other parameters are ignored. When frequency conversion ac analysis is performed, the Freq parameter is used to set the frequency of the source. For harmonic balance and envelope, the Freq parameter identifies the closest analysis frequency. If the frequency is not close enough, a warning is generated and the source generates no signal for that analysis. In the envelope analysis, the frequency difference can be up to 0.5/timestep and the given frequency is still properly generated. This source can also be used in transient analysis to generate an arbitrary waveform at the specified carrier frequency. - 3. The output impedance of the source is defined by the Z-parameter. The output impedance may be complex, but dc, transient, and baseband envelope analyses do not support non-real impedances. - 4. The signal level is defined by the power parameter P and the Mod parameter. The signal level is set such that the power delivered to a conjugately matched load is equal to P. assuming the Mod parameter is equal to 1.0. The Mod parameter can be used to apply complex, linearly scaled, modulation to the output signal. When this source represents a real-only, baseband signal (transient or the baseband part of an envelope signal), only the real part of the signal is generated. Otherwise, the full complex value of Mod can be used to modify both the amplitude and phase of the signal. - 5. For time-domain analyses, transient and envelope, both the P and Mod parameters can be expressions of time. A time varying P provides a logarithmically scaled modulation, but is limited to scalar, magnitude-only variations. A time varying Mod provides both linearly scaled amplitude modulation as well as a linear phase modulation by using a complex expression. When a source with a time varying expression is used in a steady-state analysis such as harmonic balance, then its value at time=0 is used. Care must be exercised if these parameters are expressed as a function of frequency, because this is not fully supported in all analysis modes. - 6. In small-signal mixer simulation, the simulator sets the operating point of the circuit using the carrier signal alone as the source. The two sidebands must be set such that they have no effect on the operating point of the circuit. - 7. Set Noise=0 to have no noise generated by this source. 8. The Temp parameter only affects the amount of noise generated by the port. If the Noise parameter equals yes, the amount of noise generated is based on this temperature. This parameter is not used on the input and output ports when computing noise figure, as the noise figure definition requires the input port temperature to be 290K and the output port is noiseless. # P nHarm (Power Source, Fundamental Frequency with N-Harmonics) # Symbol #### **Parameters** Num = port number Z =source impedance Freq = fundamental frequency P = Nth harmonic power level Noise = enable/disable port thermal noise: yes or no Pac = ac power; value used for ac simulation FundIndex = frequency index; an alternate way of specifying center frequency, used in MDS Vdc = open circuit dc voltage Other = output string to netlist Temp = element temperature in degrees Celsius. Default equals the circuit ambient temperature # Range of Usage N/A # Notes/Equations/References - 1. The phase of the source is specified by a complex value P such as P = polar(dBmtow(0)), 45). The unit for power is W, mW, and so on; dBm must be converted to W by using dBmtoW(). - 2. This power source is defined by a fundamental frequency component, and N harmonics of the fundamental frequency. It can be used in all circuit simulations. For ac analysis, only Z and Pac are used—all other parameters are ignored. When frequency conversion ac analysis is performed, the Freq parameter is used to set the frequency of the source. For harmonic balance and envelope, the Freq parameter identifies the closest analysis frequency. If the frequency is not close enough, a warning is generated and the source generates no signal for that analysis. In the envelope analysis, the frequency difference can be up to 0.5/timestep and the given frequency is still properly generated. This source can also be used in transient analysis to generate an arbitrary waveform at the specified carrier frequency. - 3. The output impedance of the source is defined by the Z-parameter. The output impedance may be complex, but dc, transient, and baseband envelope analyses do not support non-real impedances. - 4. The signal level is defined by the power parameter P. The signal level is set such that the power delivered to a conjugately matched load is equal to P. When this source represents a real-only, baseband signal (transient or the baseband part of an envelope signal), only the real part of the signal is generated. - 5. For time-domain analyses, transient and envelope, the P parameter may be an expression of time. A time varying P provides a logarithmically scaled modulation, but is limited to scalar, magnitude-only variations. When a source with a time varying expression is used in a steady-state analysis such as harmonic balance, then its value at time=0 is used. Care must be exercised if these parameters are expressed as a function of frequency, since this is not fully supported in all analysis modes. - 6. Set Noise=0 to have no noise generated by this source. - 7. The Temp parameter only affects the amount of noise generated by the port. If the Noise parameter equals yes, the amount
of noise generated is based on this temperature. This parameter is not used on the input and output ports when computing noise figure, as the noise figure definition requires the input port temperature to be 290K and the output port is noiseless # P nTone (Power Source, N Frequencies and Power Levels) ### Symbol #### **Parameters** Num = port number Z =source impedance Freq = Nth frequency tone P = Nth tone power level Noise = enable/disable port thermal noise: yes or no Pac = ac power; value used for ac simulation Vdc = open circuit dc voltage Other = output string to netlist Temp = element temperature in degrees Celsius. Default equals the circuit ambient temperature # Range of Usage N/A ### Notes/Equations/References - 1. The phase of the source is specified by a complex value P such as P = polar(dBmtow(0)), 45). The unit for power is W, mW, and so on; dBm must be converted to W by using dBmtoW(). - 2. This power source can have an arbitrary number $(1 \le N \le \infty)$ of harmonically independent tones. It can be used in all circuit simulations. For ac analysis, only Z and Pac are used—all other parameters are ignored. When frequency conversion ac analysis is performed, the Freq parameter is used to set the frequency of the source. For harmonic balance and envelope, the Freq parameter identifies the closest analysis frequency. If the frequency is not close enough, a warning is generated and the source generates no signal for that analysis. In the envelope analysis, the frequency difference can be up to 0.5/timestep and the given frequency is still properly generated. This - source can also be used in transient analysis to generate an arbitrary waveform at the specified carrier frequency. - 3. The output impedance of the source is defined by the Z-parameter. The output impedance may be complex, but dc, transient, and baseband envelope analyses do not support non-real impedances. - 4. The signal level is defined by the power parameter P. The signal level is set such that the power delivered to a conjugately matched load is equal to P. When this source represents a real-only, baseband signal (transient or the baseband part of an envelope signal), only the real part of the signal is generated. - 5. For time-domain analyses, transient and envelope, the P parameter may be an expression of time. A time varying P provides a logarithmically scaled modulation, but is limited to scalar, magnitude-only variations. When a source with a time varying expression is used in a steady-state analysis such as harmonic balance, then its value at time=0 is used. Care must be exercised if these parameters are expressed as a function of frequency, since this is not fully supported in all analysis modes. - 6. Set Noise=0 to have no noise generated by this source. - 7. The Temp parameter only affects the amount of noise generated by the port. If the Noise parameter equals yes, the amount of noise generated is based on this temperature. This parameter is not used on the input and output ports when computing noise figure, as the noise figure definition requires the input port temperature to be 290K and the output port is noiseless # P SpectrumDataset (Power Source, Frequency Spectrum Defined in Dataset) # **Symbol** #### **Parameters** Num = port number Z =source impedance Freq = fundamental frequency Dataset = dataset name Expression = dataset variable or expression ### Range of Usage N/A - 1. Each dataset-based source has these fields: - A field Dataset, for the name of the dataset. - A field Expression, for an expression or a dataset variable. The values of this expression will be used as the harmonics for this source. - A field Freq for the fundamental frequency of this source. - 2. The frequency of the fundamental is specified on this source. It is not affected by the actual value of the fundamental associated with the harmonic data in a dataset. - 3. Expression must evaluate to a one-dimensional array with two or more entries. The entries in this array are interpreted as dc, fundamental, second harmonic, third harmonic, etc. There cannot be gaps in the list of harmonics; if the list of harmonics includes the 6th harmonic, harmonics 0-5 must be present. - 4. Because no interpolation or extrapolation is done by the system, the harmonic data must be single-dimensional. While multi-dimensional data is handled for dataset variables, it is not handled for this source. - 5. The harmonic values must be numeric and can be given as real (integer) or complex values. If given as real values, they will be converted to complex (zero imaginary part) before being used in a simulation. - 6. The designer must ensure the rationality of the expression that is used. If an expression is used that actually evaluates to a value of resistance, the simulator has no way of detecting this, and will treat these resistance values as harmonics in a harmonic balance simulation. - The independent data extracted from the design system expression will be ignored; only the dependent data will be used, and it will be treated as harmonics. The independent data is ignored so that the source can be frequency shifted (the fundamental value can be changed to something other than that associated with the harmonics in a dataset). # V 1Tone (Voltage Source, Single Frequency) # Symbol #### **Parameters** V = voltage at center frequency Freq = center frequency V USB = voltage of upper sideband small-signal tone; value used for small-signal mixer simulation V LSB = voltage of lower sideband small-signal tone; value used for small-signal mixer simulation Vdc = dc voltage Vac = ac voltage; value used for ac simulation SaveCurrent = flag to save branch current FundIndex = frequency index; an alternate way of specifying center freq, used in MDS Other = output string to netlist ### Range of Usage Freq > 0 # Notes/Equations/References 1. This single frequency voltage source is defined by its frequency and its voltage and can be used in all circuit simulations. The phase of the source is specified by a complex value V, such as V=polar(1V, 45). For ac simulation, only Vac is used and all other parameters are ignored. When frequency conversion ac analysis is performed, the Freq parameter is used to set the frequency of the source. For harmonic balance and circuit envelope, the Freq parameter identifies the closest analysis frequency. If the frequency is not close enough, a warning is generated and the source voltage is set to 0 for that analysis. In the envelope analysis, the frequency difference can be up to 0.5/timestep and the given frequency is still properly generated. This source can also be used in transient analysis to generate an arbitrary waveform at the specified carrier frequency. When this source represents a real-only, baseband voltage (that is, transient or the baseband part of an envelope signal), then only the real part of the signal is generated. Otherwise, the full complex value of V is used to define both the amplitude and phase relationships. - 2. For time-domain analyses, transient and envelope, the voltage parameter may be an expression of time. When a source with a time varying expression is used in a steady-state analysis such as harmonic balance, then its value at time=0 is used. Care must be exercised if the voltage parameter is a function of frequency, since this is not fully supported in all analysis modes. - 3. A dc term can be defined for this device. Also, as with the other voltage sources, a SaveCurrent parameter is available to disable the storing of the voltage source current to the dataset - 4. In small signal mixer simulation, the simulator sets the operating point of the circuit using the carrier signal alone as the source. The two sidebands must be set such that they have no effect on the operating point of the circuit. - 5. In S-parameter analysis, this component is treated as an ideal short circuit. # V AC (AC Voltage Source) # Symbol #### **Parameters** Vdc = dc voltage, in volts Vac = ac voltage, in volts; value used for ac analysis only SaveCurrent = flag to save branch current Freq = frequency # Range of Usage N/A # Notes/Equations/References 1. For AC simulations with no mixer component, leave Freq equal to freq, where freq is a global variable. For frequency-conversion AC analysis, Freq = source frequency. 2. V AC is only meaningful in AC simulation. When used in other simulations, it is treated as a short circuit. # **V_DC (DC Voltage Source)** # Symbol #### **Parameters** Vdc = dc voltage, in volts Vac = ac voltage, in volts; value used for ac analysis only SaveCurrent = flag to save branch current ### Range of Usage N/A # Notes/Equations/References 1. V DC can be used in all simulations. When not in use, it is treated as a short circuit. # V nHarm (Voltage Source, Fundamental Frequency with N-Harmonics) # **Symbol** #### **Parameters** Freq = fundamental frequency V = Nth harmonic amplitude Vdc = dc voltage Vac = ac voltage; value used for ac analysis only SaveCurrent = flag to save branch current FundIndex = frequency index; an alternate way of specifying fundamental freq, used in MDS Other = output string to netlist # Range of Usage N/A # **Notes/Equations/References** 1. This voltage source has a fundamental freq. component and N ($1 \le N \le \infty$) harmonics of the fundamental freq. The phase of each harmonic is specified by a complex V, such as V=polar(IV, 45). This source is used in all simulations. The phase of the source is specified by a complex value V, such as V=polar(1V, 45). For ac simulation, only Vac is used and all other parameters are ignored. When frequency conversion ac analysis is performed, the Freq parameter is used to set the frequency of the source. For harmonic balance and circuit envelope, the Freq parameter identifies the closest analysis frequency. If the frequency is not close enough, a warning is generated and the source voltage is set to 0 for that analysis. In the envelope analysis, the frequency
difference can be up to 0.5/timestep and the given frequency is still properly generated. This source can also be used in transient analysis to generate an arbitrary waveform at the specified carrier frequency. When this source represents a real-only, baseband voltage (that - is, transient or the baseband part of an envelope signal), then only the real part of the signal is generated. Otherwise, the full complex value of V is used to define both the amplitude and phase relationships. - 2. For time-domain analyses, transient and envelope, the voltage parameter may be an expression of time. When a source with a time varying expression is used in a steady-state analysis such as harmonic balance, then its value at time=0 is used. Care must be exercised if the voltage parameter is a function of frequency, since this is not fully supported in all analysis modes. - 3. A dc term can be defined for this device. Also, as with the other voltage sources, a SaveCurrent parameter is available to disable the storing of the voltage source current to the dataset. - 4. In S-parameter analysis, this component is treated as an ideal short circuit. # V nTone (Voltage Source, N Frequencies and Amplitudes) # **Symbol** #### **Parameters** Freq = Nth frequency tone V = Nth tone amplitude Vdc = dc voltage Vac = ac voltage; value used for ac simulation only SaveCurrent = flag to save branch current Other = output string to netlist # Range of Usage N/A ### Notes/Equations/References 1. This voltage source can have an arbitrary number $(1 \le N < \infty)$ of harmonically independent tones and can be used in all simulations. The phase of each tone is specified by a complex V value such as V = polar(1V, 45). For ac simulation, only Vac is used and all other parameters are ignored. When frequency conversion ac analysis is performed, the Freq parameter is used to set the frequency of the source. For harmonic balance and circuit envelope, the Freq parameter identifies the closest analysis frequency. If the frequency is not close enough, a warning is generated and the source voltage is set to 0 for that analysis. In the envelope analysis, the frequency difference can be up to - 0.5/timestep and the given frequency is still properly generated. For ac analysis, the Freq parameter is ignored. - 2. For time-domain analyses, transient and envelope, the voltage parameter may be an expression of time. When a source with a time varying expression is used in a steady-state analysis such as harmonic balance, then its value at time=0 is used. Care must be exercised if the voltage parameter is a function of frequency, since this is not fully supported in all analysis modes. - 3. A dc term can be defined for this device. Also, as with the other voltage sources, a SaveCurrent parameter is available to disable the storing of the voltage source current to the dataset. - 4. In S-parameter analysis, this component is treated as an ideal short circuit. # V SpectrumDataset (Voltage Source, Frequency Spectrum Defined in Dataset) # **Symbol** #### **Parameters** Dataset = dataset name Expression = dataset variable or expression Freq = fundamental frequency SaveCurrent = flag to save branch current #### Range of Usage N/A - 1. Each dataset-based source has these fields: - A field Dataset, for the name of the dataset. - A field Expression, for an expression or a dataset variable. The values of this expression will be used as the harmonics for this source - A field Freq for the fundamental frequency of this source. - 2. The frequency of the fundamental is specified on this source. It is not affected by the actual value of the fundamental associated with the harmonic data in a dataset. - 3. Expression must evaluate to a one-dimensional array with two or more entries. The entries in this array are interpreted as dc, fundamental, second harmonic, third harmonic, and so on. There cannot be gaps in the list of harmonics; if the list of harmonics includes the 6th harmonic, harmonics 0-5 must be present. - 4. Because no interpolation or extrapolation is done by the system, the harmonic data must be single-dimensional. While multi-dimensional data is handled for dataset variables, it is not handled for this source. - 5. The harmonic values must be numeric and can be given as real (integer) or complex values. If given as real values, they will be converted to complex (zero imaginary part) before being used in a simulation. - 6. The designer must ensure the rationality of the expression that is used. If an expression is used that actually evaluates to a value of resistance, the system has no way of detecting this, and will treat these resistance values as harmonics in a harmonic balance simulation. - The independent data extracted from the design system expression will be ignored; only the dependent data will be used, and it will be treated as harmonics. The independent data is ignored so that the source can be frequency shifted (the fundamental value can be changed to something other than that associated with the harmonics in a dataset). # Vf BitSeq (Fourier Transform of Bit Sequence Waveform) ### **Symbol** #### **Parameters** Vlow = minimum voltage level, in V, fV, pV, nV, uV, mV, or kV (default: 0 V) Vhigh = maximum voltage level in V, fV, pV, nV, uV, or mV (default: 5 V) Rate = bit rate in MHz, Hz, KHz, Ghz (default: 1 MHz) Rise = rise time of pulse in nsec, fsec, psec, nsec, usec, or msec (default: 1 nsec) Fall = fall time of pulse in nsec, fsec, psec, nsec, usec, or msec (default: 1 nsec) BitSeq = bit sequence #### Range of Usage N/A - 1. BitSeq allows you to vary the waveform of a pulse: an arbitrary bit pattern such as 101010 (default), or considerably longer and more varied, such as 11100001111101. When the end of the sequence is reached, the sequence is repeated. A specification of 1 sets voltage to Vhigh, 0 sets it to Vlow. - 2. When using Vf BitSeq, a VAR statement must be included in the schematic to define Tstart, Tstop, and Tstep. These variables need to be consistant with the simulation controller parameters. - 3. It is recommended to use Vf BitSeq in frequency analyses rather than with transient simulations. For transient simulations a VtBitSeq could be used instead. - 4. It is recommended that 'Tstop' must equal exactly one bit cycle for good results. For example, if the BitRate=500MHz, then Bit period=1/BitRate=1/500MHz=2ns. The BitSeq=1101011100111100 is 16 bits long, so Tstop = 32ns which is from 16bits*2ns. See the schematics below. - 5. It is recommended for Harmonic Balance simulations that Freq[1] = 1/Tstop. # Vf_Pulse (Voltage Source, Fourier Series Expansion of Period Pulse Wave) # **Symbol** #### **Parameters** Vpeak = peak voltage amplitude of pulse, in volts Vdc = dc offset Freq = fundamental frequency component $(1 / T_0)$, where T_0 is the pulse-period) of pulse-train Width = pulse-width, in seconds Rise = rise-time, in seconds Fall = fall-time, in seconds Delay = time delay, in seconds Weight = compensation for Gibb's Phenomenon if rise- or fall-time is 0; activated when Weight=yes; ignored if both Rise and Fall are > 0 Harmonics = number of harmonics SaveCurrent = flag to save branch current FundIndex = frequency index; an alternate way of specifying fundamental freq, used in MDS # Range of Usage Width ≥ 0 Freq > 0 Rise > 0 $Fall \ge 0$ Delay ≥ 0 Rise + Fall + Width $\leq T_0 = 1/\text{Freq}$ - 1. Vf_Pulse is a time-periodic rectangular pulse-train voltage source that can be used in all simulations. However, the Vf_Pulse source is short circuited for AC simulation. The time-periodic signal is converted to discrete frequency components that are harmonically related and represented using the signal's equivalent Fourier series. - 2. The source produces a positive voltage with respect to pin 1. - 3. If either rise-time (Rise) or fall-time (Fall) is 0, the discontinuity in the pulse gives rise to Gibb's Phenomenon when the pulse is synthesized from its Fourier components. The ripple effect at the discontinuity can be smoothed by specifying Weight=yes, which scales the Fourier coefficients of the source by Lanczos factors or weights. - 4. The number of terms in the Fourier series used to represent this source in the frequency domain is equivalent to the order chosen for the harmonic balance simulation. - 5. You can synthesize a similar time-periodic signal by connecting in series a number of sinusoidal steady-state sources at harmonically related frequencies and having amplitudes and phases that are the corresponding Fourier coefficients. # Vf Sawtooth (Voltage Source, Fourier Series Expansion of Periodic Sawtooth) # **Symbol** #### **Parameters** Vpeak = peak voltage amplitude of wave, in volts Vdc = dc offset Freq = frequency Delay = time delay, in seconds Weight = compensation for Gibb's Phenomenon if rise- or fall-time is 0; activated when Weight=yes; ignored if rise and fall are non-0 Harmonics = number of harmonics SaveCurrent = flag to save branch current FundIndex = frequency index; an alternate way of specifying fundamental freq, used in MDS ### Range of Usage Delay ≥ 0 - 1. This item is a time-periodic sawtooth voltage source that can be used in all simulations. However, the Vf Sawtooth source is short circuited for AC simulation. The time-periodic signal is converted to discrete frequency components that are harmonically related and represented using the signal's equivalent Fourier series. - 2. The source produces a positive voltage with respect to pin 1. - 3. The discontinuity in the pulse caused by 0 fall-time gives rise to Gibb's Phenomenon when the pulse is synthesized from Fourier components. The ripple effect at the discontinuity can be smoothed by specifying Weight=yes, which scales the Fourier coefficients of the source by Lanczos factors or weights. - 4. The number of terms in the Fourier series used to represent this source in the frequency domain is equivalent to the order chosen for the harmonic balance
simulation. - 5. You can synthesize a similar time-periodic signal by connecting in series a number of sinusoidal steady-state sources at harmonically related frequencies and having amplitudes and phases that are the corresponding Fourier coefficients. # Vf Square (Voltage Source, Fourier Series Expansion of Period Square Wave) ### **Symbol** #### **Parameters** Vpeak = peak voltage amplitude of pulse, in volts Vdc = dc offset Freq = frequency Rise = rise-time, in seconds Fall = fall-time, in seconds Delay = time delay, in seconds Weight = compensation for Gibb's Phenomenon if rise- or fall-time is 0; activated=yes; ignored if rise and fall are non-0 Harmonics = number of harmonics SaveCurrent = flag to save branch current FundIndex = frequency index; an alternate way of specifying fundamental freq, used in MDS # Range of Usage Delay ≥ 0 ; Rise ≥ 0 ; Fall ≥ 0 ; Rise + Fall $< T_0/2$ - 1. This time-periodic square-wave voltage source can be used in all simulations. However, the Vf Square source is short circuited for AC simulation. The time-periodic signal is converted to discrete frequency components that are harmonically related and represented using the signal's equivalent Fourier series. - 2. The source produces a positive voltage with respect to pin 1. - 3. If either rise-time (Rise) or fall-time (Fall) is zero, the discontinuity in the pulse gives rise to Gibb's Phenomenon when the pulse is synthesized from its Fourier components. The ripple - effect at the discontinuity can be smoothed by specifying Weight=yes, which scales the Fourier coefficients of the source by Lanczos factors or weights. - 4. The number of terms in the Fourier series used to represent this source in the frequency domain is equivalent to the order chosen for the harmonic balance simulation. - 5. A similar time-periodic signal can be synthesized by connecting in series a number of sinusoidal steady-state sources at harmonically related frequencies with amplitudes and phases of the corresponding Fourier coefficients. # Vf Triangle (Voltage Source, Fourier Series Expansion of Period Triangle Wave) # **Symbol** #### **Parameters** Vpeak = peak voltage amplitude of wave, in volts Vdc = dc offset Freq = frequency Delay = time delay, in seconds Harmonics = number of harmonics SaveCurrent = flag to save branch current FundIndex = frequency index; an alternate way of specifying fundamental freq, used in MDS # Range of Usage Delay ≥ 0 - 1. This is a time-periodic triangle-wave voltage source that can be used in all simulations. However, the Vf Triangle source is short circuited for AC simulation. The time-periodic signal is converted to discrete frequency components that are harmonically related and represented using the signal's equivalent Fourier series. - 2. The source produces a positive voltage with respect to pin 1. - 3. The number of terms in the Fourier series used to represent this source in the frequency domain is equivalent to the order chosen for the harmonic balance simulation. # V HB Dataset (Voltage Source, HB Dataset Variable) # **Symbol** #### **Parameters** Dataset = dataset filename Variable = dataset variable Vdc= DC voltage in fV, pV, nV, uV, mV, V (default: 0 V) Vac = AC voltage in fV, pV, nV, uV, mV, V; use polar() for phase; default: polar (1,0) V SaveCurrent = flag to save branch current; default: YES # **Chapter 3: Sources, Modulated** ### PtRF CDMA ESG FWD ### (RF Carrier Modulated by HP-ESG Forward Link CDMA Signal) #### Symbol #### **Parameters** F0 = carrier frequency Power = RF output power Z = RF output impedance ### Range of Usage N/A ### Notes/Equations/References - This model generates a digitally-modulated RF signal that has the modulation characteristics of a base station CDMA signal. It does not contain any framing characteristics. This source is implemented by interpolating data from a stored data file, which offers somewhat faster performance compared to recomputing the source. - 2. The stored data file is generated by HP ESG series of signal generators. This source has lower adjacent channel power than that of PtRF CDMA IS95 FWD. - 3. It is recommended that simulation timestep is equal to (0.25/1.2288 MHz), i.e, taking four samples per bit. Using other timestep values causes the source to interpolate between data samples and thus result in a distorted spectrum. - 4. Following are the recommended controller setups for Envelope simulation: - Envelope item: Freq[1] = RFfreq Order[1] = 1 StatusLevel=2 Stop=tstop Step=tstep Other=SavetoDataset=no • VAR item bit_rate=1.2288 MHz RFfreq = 1.9 GHz Pavs = 0 dBm $sam_per_bit = 4$ tstep = 1/(bit rate*sam per bit) numSymbols = 256 tstop = num Symbols/(bit_rate/2) • PtRF_CDMA_!S95_FWD item FO=RFfreq Power = dbmtow(Pavs) Z=50 Ohm ### PtRF CDMA ESG REV ### (RF Carrier Modulated by HP-ESG Reverse Link CDMA Signal) #### Symbol #### **Parameters** F0 = carrier frequency Power = RF output power Z = RF output impedance # Range of Usage N/A ### Notes/Equations/References - This model generates a digitally-modulated RF signal that has the modulation characteristics of a hand set CDMA signal. It does not contain any framing characteristics. This source is implemented by interpolating data from a stored data file, which offers somewhat faster performance compared to recomputing the source. - 2. The stored data file is generated by HP ESG series of signal generators. This source has lower adjacent channel power than that of PtRF CDMA IS95 REV. - 3. An identical source that you can modify is located in the following project folder: examples/Tutorial/ModSources_prj. The source is called IS95RevLinkSrc2. - 4. It is recommended that simulation timestep is equal to (0.25/1.2288 MHz), i.e, taking four samples per bit. Using other timestep values makes the source to interpolate between data samples and result in distorted spectrum. - 5. Following are the recommended controller setups for Envelope simulation: - Envelope item: Freq[1] = RFfreq Order[1] = 1 StatusLevel=2 Stop=tstop Step=tstep Other=SavetoDataset=no • VAR item bit rate=1.2288 MHz RFfreq = 1.9 GHz Pavs = 0 dBm sam per bit = 4 tstep = 1/(bit_rate*sam_per_bit) numSymbols = 256 tstop = num Symbols/(bit rate/2) • PtRF_CDMA_!S95_FWD item FO=RFfreq Power = dbmtow(Pavs) Z=50 Ohm #### PtRF CDMA IS95 FWD #### (RF Carrier Modulated by IS95 Forward Link CDMA Signal) #### **Symbol** #### **Parameters** F0 = carrier frequency Power = RF output power Z = RF output impedance LinMod = additional linear modulation Toffset = time offset into data array ### Range of Usage N/A # Notes/Equations/References - 1. This model generates a digitally-modulated RF signal that has the modulation characteristics of a base station CDMA signal. It does not contain any framing characteristics. - 2. The bandlimiting filter coefficients come from IS-95 specifications. This source has higher adjacent channel power than that of PtRF_CDMA_ESG_FWD. - 3. It is recommended that simulation timestep is equal to (0.25/1.2288 MHz), i.e, taking four samples per bit. Using other timestep values makes the source to interpolate between data samples and result in distorted spectrum. - 4. Following are the recommended controller setups for Envelope simulation: - Envelope item: Freq[1] = RFfreq Order[1] = 1 StatusLevel=2 Stop=tstop Step=tstep Other=SavetoDataset=no • VAR item bit rate=1.2288 MHz RFfreq = 1.9 GHz $Pavs = 0_dBm$ sam per bit = 4 tstep = 1/(bit rate*sam per bit) numSymbols = 256 tstop = num Symbols/(bit_rate/2) • PtRF CDMA !S95 FWD item FO=RFfreq Power = dbmtow(Pavs) Z=50 Ohm #### PtRF CDMA IS95 REV #### (RF Carrier Modulated by IS95 Reverse Link CDMA Signal) #### Symbol #### **Parameters** F0 = carrier frequency Power = RF output power Z = RF output impedance ### Range of Usage N/A #### Notes/Equations/References - This model generates a digitally-modulated RF signal that has the modulation characteristics of a hand set CDMA signal. It does not contain any framing characteristics. This source is implemented by interpolating data from a stored data file, which offers somewhat faster performance compared to recomputing the source. - 2. The bandlimiting filter coefficients come from IS-95 specifications. This source has higher adjacent channel power than that of PtRF CDMA ESG REV. - 3. An identical source that you can modify is located in the following project folder: examples/Tutorial/ModSources_prj. The source is called IS95RevLinkSrc. - 4. It is recommended that simulation timestep is equal to (0.25/1.2288 MHz), i.e, taking four samples per bit. Using other timestep values makes the source to interpolate between data samples and result in distorted spectrum. - 5. Following are the recommended controller setups for Envelope simulation: - Envelope item: Freq[1] = RFfreq Order[1] = 1 StatusLevel=2 Stop=tstop Step=tstep Other=SavetoDataset=no • VAR item bit rate=1.2288 MHz RFfreq = 1.9 GHz Pavs = 0 dBm sam per bit = 4 tstep = 1/(bit_rate*sam_per_bit) numSymbols = 256 tstop = num Symbols/(bit rate/2) • PtRF_CDMA_!S95_FWD item FO=RFfreq Power = dbmtow(Pavs) Z=50 Ohm ### PtRF DECT (RF Carrier Modulated by DECT Signal) # Symbol #### **Parameters** F0 = carrier frequency Power = RF output power Z = RF output impedance # Range of Usage N/A - 1. This model generates a digitally modulated RF signal that has the modulation characteristics of a DECT signal. Bit time is 0.868 usec. The NRZ data is Gaussian-filtered with BT=0.5. - 2. The third terminal is the digital (-1/1 volt) bit sequence. # PtRF GSM (Power Source, RF Carrier Modulated by GSM Signal) **Symbol** #### **Parameters** F0 = carrier frequency Power = RF output power Rout = RF output resistance DataRate = digital modulation data rate InitBits = initial state of PRBS data generator # Range of Usage N/A - 1. This model generates a continuously digitally modulated RF signal that has the modulation characteristics of a transmitted GSM signal. It does not contain GSM framing or pulse modulation
characteristics. It consists of a pseudorandom data generator (PRBS) feeding a Gaussian filter with a bandwidth time product of 0.3 that then FM modulates a voltage source to generate the RF output waveform. The baseband digital waveform is also output from this source - 2. The user can define the carrier frequency, power and output resistance of the RF output. The data rate can also be set, along with the initial seed value of the PRBS generator. The PRBS generator has 17 stages, with maximal length taps at bits 17 and 3. The baseband digital output is a -1V to +1V digital bit stream with a 1-ohm output impedance. - 3. There is a time delay of 2.5-bit periods plus one analysis timestep between the digital output and the modulated RF output. The RF output can be floated with any common mode voltage on its two outputs, whereas the baseband output is always referenced to ground. ### PtRF NADC (Power Source, RF Carrier Modulated by NADC Signal) #### **Symbol** #### **Parameters** F0 = carrier frequency Power = RF output power Z = RF output impedance LinMod = additional linear modulation Toffset = time offset into data array # Range of Usage N/A - 1. This model generates a continuously digitally modulated RF signal that has the modulation characteristics of a transmitted NADC signal. It does not contain framing or pulse modulation characteristics. This source is implemented by interpolating data from a stored data file, which offers somewhat faster performance compared to recomputing the source. - 2. The user can define the carrier frequency, power and output impedance of the RF output. - 3. Additional amplitude or phase modulation can be added by using LinMod to define an additional time varying modulation function. And, Toffset can be set to delay into the pseudorandom sequence to vary the effective starting point of the digital modulation sequence. The -1V to +1V baseband digital data stream is also available as an output and has a 1-ohm source resistance. - 4. This 48.6 Kbps data stream was generated by using a PRBS source to modulate an RF source using the pi/4DQPSK modulator and filtering the signal with a root raised-cosine filter amplifier with a rolloff factor of 0.35. The filter uses an impulse response equal to 40 symbol periods and a Hanning window. The data sequence is 1024 PRBS symbols in - addition to 46 zero-padding symbols. This pattern repeats if necessary, depending on the analysis stop time. - 5. The data is stored at 10 samples per symbol. If the analysis timestep is a multiple of this value, then there is no interpolation error. With other timestep values, spurious spectra may appear, but are more than 80dB below the main signal. Cubic interpolation is used on the RF output to minimize this error. Linear interpolation is used on the baseband, digital output to maintain its digital nature. ### PtRF PHS (Power Source, RF Carrier Modulated by PHS Signal) ### **Symbol** #### **Parameters** F0 = carrier frequency Power = RF output power Z = RF output impedance LinMod = additional linear modulation Toffset = time offset into data array # Range of Usage N/A - 1. This model generates a continuously digitally modulated RF signal that has the modulation characteristics of a transmitted PHS signal. It does not contain framing or pulse modulation characteristics. This source is implemented by interpolating data from a stored data file, which offers somewhat faster performance compared to recomputing the source. - 2. The user can define the carrier frequency, power and output impedance of the RF output. - 3. Additional amplitude or phase modulation can be added using LinMod to define an additional time-varying modulation function. And, Toffset can be set to delay into the pseudorandom sequence, to vary the effective starting point of the digital modulation sequence. The -1 to +1V baseband digital data stream is also available as an output and has a 1-ohm source resistance. ### PtRF Pulse (Power Source, RF Pulse Train) ### Symbol #### **Parameters** Num = port number (value type: integer) Z =source impedance P = carrier power during pulse Freq = RF carrier frequency OffRatio = linear amplitude ratio of off to on pulse portions Delay = delay time before first pulse Rise = rise time of pulse Fall = fall time of pulse Width = width of constant portion of pulse Period = pulse repetition period Chirp = linear frequency modulation during pulse Phase0 = initial phase of pulse carrier Noise = enable port thermal noise: YES, NO Pac = ac power Vdc = open circuit dc voltage # Range of Usage N/A # Notes/Equations/References 1. This RF pulse power source creates a pulse modulated RF carrier with optional frequency chirping. The carrier frequency at the start of the pulse is defined by the Freq parameter. For - envelope simulation. Freq identifies the closest analysis frequency. If the frequency is not close enough to an analysis frequency, a warning is issued and the source output is set to zero for that analysis. - 2. The pulse amplitude characteristics are defined using the Gaussian-shaped erf pulse function, so the pulse parameters have the same definition as in the VTPulse model with Edge=erf. OffRatio defines the low state of the pulse relative to the high state, defined by P; P may be complex (such as P=polar(dBmtoW(0),45), and time-varying to provide additional amplitude and phase modulation. When this source represents a baseband signal (transient or the baseband part of an envelope signal), then only the real part of the signal is output. - 3. The additional frequency chirp is referenced to the frequency value at the Delay time point where the pulse first starts turning on. The chirp rate is computed by dividing the Chirp parameter by the sum of Width, Rise and Fall time. The Chirp value then represents the amount of frequency shift over the full, extended pulse width. If OffRatio is not 0, this same chirp rate will continue until the next pulse starts, when it is reset to the Freq value. #### PtRF Step (Power Source, RF Step) #### Symbol #### **Parameters** Num = port number (value type: integer) Z =source impedance P = steady state power Freq = RF frequency Delay = time delay before step Rise = rise time of step Noise = enable port thermal noise: YES, NO Pac = ac power Vdc = open circuit dc voltage #### Range of Usage N/A - 1. This RF step power source creates an RF carrier that is turned on after the start of the time-domain simulation. The carrier frequency is defined by Freq. For envelope simulations, Freq identifies the closest analysis frequency. If the frequency is not close enough to an analysis frequency, a warning is issued and the source output is set to zero for that analysis. - 2. The carrier is turned on at the time specified by Delay. The turn-on duration is defined by Rise and uses the Gaussian-shaped rise time defined by the erf pulse() function. - 3. The P parameter can be complex and a function of time and will provide amplitude-only modulation with logarithmic scaling. Refer to the VtRF Step source if linear or other modulation is desired. When this source represents a baseband signal (transient or the baseband part of an envelope signal), then only the real part of the signal is output. # VtRF Pulse (Voltage Source, RF Pulse) ### Symbol #### **Parameters** Freq = RF carrier frequency Vpeak = voltage envelope of pulse OffRatio = linear amplitude ratio of off to on pulse portions Delay = time delay before first pulse Rise = rise time of pulse Fall = fall time of pulse Width = width of constant portion of pulse Period = pulse repetition period Chirp = linear frequency modulation during pulse Phase0 = initial phase of pulse carrier Vdc = dc voltage Vac = ac voltage SaveCurrent = save branch current: YES, NO ### Range of Usage N/A # Notes/Equations/References 1. This RF pulse voltage source creates a pulse modulated RF carrier with optional frequency chirping. The carrier frequency at the start of the pulse is defined by the Freq parameter. For envelope simulation, the Freq parameter identifies the closest analysis frequency. If the frequency is not close enough to an analysis frequency, a warning is issued and the source output is set to zero for that analysis. - 2. The pulse amplitude characteristics are defined using the Gaussian-shaped erf pulse function, so the parameters have the same definition as in the VPulse with Edge=erf. OffRatio defines the low state of the pulse relative to the high state, defined by Vpeak. The Vpeak parameter can be complex and time-varying to provide additional amplitude and phase modulation. When this source represents a baseband signal (transient or the baseband part of an envelope signal), only the real part of the signal is output. - 3. The additional frequency chirp is referenced to the frequency value at the Delay time point where the pulse first starts turning on. The chirp rate is computed by dividing the Chirp parameter by the sum of the Width, Rise and Fall time. The Chirp value then represents the amount of frequency shift over the full, extended pulse width. If the OffRatio is not zero, this same chirp rate will continue until the next pulse starts, when it is reset to the Freq parameter value. - 4. This source output in harmonic balance analyses is only the value at time=0. Additional source parameters that are available can be found in the perform/edit component dialog box. # VtRF Step (Voltage Source, RF Step) #### Symbol #### **Parameters** Freq = RF frequency V = voltage envelope of step Delay = time delay before step Rise = rise time of step Vdc = dc voltage Vac = ac voltage SaveCurrent = save branch current: YES, NO #### Range of Usage N/A - 1. This RF step voltage source creates an RF carrier that is turned on after the start of the time-domain simulation. The carrier frequency is defined by the Freq parameter. For envelope analyses, the Freq parameter identifies the closest analysis frequency. If the frequency is not close enough to an
analysis frequency, a warning is issued and the source voltage is set to 0 for that analysis. - 2. The carrier is turned on at the time specified by the Delay parameter. The turn-on duration is defined by the Rise parameter and uses the Gaussian-shaped rise time defined by the (erf pulse() function). - 3. The voltage parameter can be a complex value to define both the amplitude and phase of the carrier. It can also be a time-varying expression to put additional amplitude or phase modulation on the carrier. When this source represents a baseband signal (transient or the baseband part of an envelope signal), then only the real part of the signal is output. Sources, Modulated # **Chapter 4: Sources, Noise** # **I_Noise (Noise Current Source)** ### **Symbol** #### **Parameters** I_Noise = noise current magnitude, in amperes # Range of Usage N/A ### Notes/Equations/References 1. I_Noise is the rms noise current. For simulations other than noise analysis, it will be replaced by an open circuit. # I NoiseBD (Bias-Dependent Noise Current Source) ### **Symbol** #### **Parameters** None #### Range of Usage A0 and A1 cannot be simultaneously set to zero. #### Notes/Equations/References - 1. For simulations other than noise analysis, I_NoiseBD is treated as an open circuit. - 2. The values and the units of K, Ie, A0, A1, and Fe should be such that the strength of the noise source as computed from the following expression results in amperes²/Hz. - 3. The noise spectral density of this source is given by $$\langle i^2 \rangle = \frac{K \times Idc^{Ie}}{A0 + A1 \times f^{Fe}}$$ where *Idc* is the dc bias current in amperes and *f* is the simulation frequency in hertz. The dc current is that flowing into the Pin of Elem. Depending on the values of K, Ie, A0, A1, and Fe this source can be used as a flicker, burst, shot or thermal noise source. This can be explained by comparing the noise spectral density with the spectral density of a flicker, burst, shot and thermal noise source, given: Flicker noise: $$\langle i^2 \rangle = \frac{Kf \times Idc^{Af}}{f^{Ffe}}$$ Burst noise: $$\langle i^2 \rangle = \frac{Kb \times Idc^{Ab}}{1 + \left(\frac{f}{Fb}\right)^2}$$ Shot noise: $\langle i^2 \rangle = 2 \times q \times Idc$ Thermal noise: $\langle i^2 \rangle = 4 \times k \times T \times g$ Table 4-1 summarizes the values to which the parameters must be set to realize the types of noise sources. Table 4-1. Parameter values for noise sources | Parameter | Flicker | Burst | Shot | Thermal | |-----------|---------|---------------------|------|---------| | K | Kf | Kb | 2×q | 4×k×T×g | | Ie | Af | Ab | 1.0 | 0.0 | | A0 | 0.0 | 1.0 | 1.0 | 1.0 | | A1 | 1.0 | (1/Fb) ² | 0.0 | 0.0 | | Fe | Ffe | 2.0 | 0.0 | 0.0 | 4. This component has no default artwork associated with it. ### **NoiseCorr (Noise Source Correlation)** #### Symbol #### **Parameters** CorrCoeff = correlation coefficient Source1 = source 1 name Source2 = source 2 name ### Range of Usage N/A # Notes/Equations/References - 1. This source is used in noise analysis only; it is ignored in other simulations. - 2. The sources that are correlated can be current or voltage sources. The correlation coefficient is defined in this equation: $$CorrCoeff = \frac{\langle n_1, n_2^* \rangle}{\sqrt{|n_1|^2 |n_2|^2}}$$ where CorrCoeff is the correlation coefficient between the sources n_1 and n_2 are rms values of the noise generated by each source. # Noisy2Port (Linear Noisy 2-Port Network) #### Symbol #### **Parameters** None ### Range of Usage N/A #### Notes/Equations/References - 1. This source is used in noise analysis only; for other simulations, voltage source will be replaced by a short circuit and current source will be replaced by an open circuit. - 2. If NFmin, Sopt, and Rn are used to characterize noise, the following relation must be satisfied for a realistic model. $$\frac{Rn}{Zo} \ge \frac{To(Fmin - 1){{{\left| {1 + Sopt} \right|}^2}}}{{T4}}\frac{{{{\left({1 - {{\left| {{S_{11}}} \right|}^2}} \right)}}}}{{{{{\left| {1 - Sopt}\;{S_{11}} \right|}^2}}}}$$ A warning message will be issued if Rn does not meet this criterion. If the noise parameters attempt to describe a system that requires negative noise (due to Rn being too small), the negative part of the noise will be set to zero and a warning message will be issued. # V Noise (Noise Voltage Source) #### **Symbol** #### **Parameters** V Noise = noise voltage amplitude, in volts SaveCurrent = save branch current: YES, NO #### Range of Usage N/A #### Notes/Equations/References - 1. This source is the rms noise voltage. For simulations other than noise analysis, it will be replaced by a short circuit. - 2. Setting V_Noise=1 μ v specifies a spectral noise density in units of $\frac{volts}{\sqrt{Hz}}$. RMS noise voltage computed by $$\sqrt{mean(Vsource^2)}$$ where Vsource is the random noise voltage at each timestep. is $$1 \mu v \sqrt{\frac{1}{Step}}$$ Therefore, rms noise voltage is $$1\mu\nu\sqrt{\frac{1}{0.1msec}} = 100\mu\nu$$ For baseband envelope, noise is distributed in a bandwidth out to $\frac{0.5}{Sten}$, rms noise voltage of the baseband envelope is Sources, Noise $$1 \mu v \sqrt{\frac{0.5}{0.1 msec}} = 70.7 \mu v$$ # V NoiseBD (Bias-dependent Noise Voltage Source) #### **Symbol** #### **Parameters** None #### Range of Usage A0 and A1 cannot be simultaneously set to zero. #### Notes/Equations/References - 1. For simulations other than noise analysis, V NoiseBD is treated as a short circuit. - 2. The values and the units of K, Ie, A0, A1, and Fe should be such that the strength of the noise source as computed from the following expression results in volts²/Hz. The noise spectral density of this source is given by: $$\langle v^2 \rangle = \frac{K \times Idc^{Ie}}{A0 + A1 \times f^{Fe}}$$ where *Idc* is the dc bias current in amperes and f is the simulation frequency in hertz. The dc current is that flowing into the Pin of Elem. Depending on the values of K, Ie, A0, A1, and Fe this source can be used as a flicker, burst, shot or thermal noise source. This can be explained by comparing the noise spectral density with the spectral density of a flicker, burst, shot and thermal noise source. Flicker noise: $$\langle v^2 \rangle = \frac{Kf \times Idc^{Af}}{f^{Ffe}}$$ Burst noisei: $$\langle v^2 \rangle = \frac{Kb \times Idc^{Ab}}{1 + \left(\frac{f}{Fb}\right)^2}$$ Shot noise: $\langle v^2 \rangle = 2 \times q \times Idc$ Thermal noise: $\langle v^2 \rangle = 4 \times k \times T \times g$ Table 4-2 summarizes the values to which the parameters must be set to realize the types of noise sources. Table 4-2. Parameter values for noise sources | Parameter | Flicker | Burst | Shot | Thermal | |-----------|---------|---------------------|------|---------| | K | Kf | Kb | 2×q | 4×k×T×g | | Ie | Af | Ab | 1.0 | 0.0 | | A0 | 0.0 | 1.0 | 1.0 | 1.0 | | A1 | 1.0 | (1/Fb) ² | 0.0 | 0.0 | | Fe | Ffe | 2.0 | 0.0 | 0.0 | - 3. When using V_NoiseBD, the parameter K should be properly scaled such that it yields Thevenin equivalent of the above current sources. - 4. This component has no default artwork associated with it. Sources, Noise # **Chapter 5: Sources, Time Domain** Independent sources that do not fit in the frequency-domain category are placed in the time-domain sources category. Vt prefixes are transient voltage sources; It prefixes are transient current sources; Pt prefixes are transient power sources. When time domain sources are used in S-parameter simulation, voltage sources are treated as short circuits; current sources are treated as open sources; and, power sources are treated as impedances. Time-domain sources are generally not used for frequency-domain simulation such as ac and harmonic balance. ### **ClockWjitter (Current Source: Clock with Jitter)** # Symbol #### **Parameters** Low = low-level voltage High = high-level voltage Rout = output resistance Delay = delay time Rise = rise time Fall = fall time Width = pulse width Period = pulse period Jitter = time jitter # Range of Usage Delay ≥ 0 , Rise ≥ 0 , Fall ≥ 0 Width > 0 Width + Rise + Fall \leq Period - 1. This source is a voltage source in series with a resistor Rout. If Rout is very small, it behaves like an ideal voltage source. - 2. Jitter is specified in time units. It models the timing jitter of a clock signal. # **I_DC** (DC current source) ### **Symbol** #### **Parameters** Idc = dc current Iac = ac current; value used for ac analysis only #### Range of Usage N/A - 1. I DC is an ideal dc current source. Positive current flows into the source at pin 1 and out of the source at pin 2. - 2. This source is used in all simulations. When not in use, it is treated as an open circuit. ### ItDataset (Current Source, Time Domain Waveform Defined in Dataset) ### **Symbol** #### **Parameters** Dataset = dataset name Expression = dataset variable or expression Freq = carrier frequency Gain = apply to dataset values; can be complex and time varying Tmax = maximum dataset time to use Toffset = initial dataset time offset Tscale = time speedup scaling factor Idc = dc offset current Interpolation = interpolation method ### Range of Usage N/A - 1. This data-based, time-domain waveform current source is defined by a time domain dataset variable. The dataset variable must have time as its independent swept axis. This source can be used in transient or envelope simulation. - 2. The carrier frequency defined by the Freq parameter is independent of the dataset. - For envelope simulation, the Freq parameter identifies the closest analysis frequency. If the frequency is not close enough to an analysis frequency, a warning is issued and the source current is set to zero for that analysis. - 3. If Tmax is not given, the simulation Tstop must not exceed the time range of the stored variable. The output current at a given time is the interpolated dataset variable value at that time multiplied by the Gain parameter, evaluated at that time value. The dataset interpolation, if
needed, is performed using linear or spline interpolation of the real and imaginary values. The Gain parameter can be complex and time varying. When this source represents a baseband signal (transient or the baseband part of an envelope signal), then only the real part of the signal is generated. For non-baseband signals this output current is the complex envelope at the specified carrier frequency. The dataset variable and Gain parameter may be real, even for non-baseband signals, in which case they are simply defining the amplitude modulation of the carrier. 4. If Tmax is given, this source also allows the time axis to be scaled and will re-cycle through the dataset as many times as is necessary. This allows a single waveform that was captured, either by measurements or by simulation, and stored into a dataset to be used in different simulations with different time scales, and be translated to different carrier frequencies and converted into an indefinitely long, periodic waveform. The Tmax parameter is the maximum dataset time value to use from the dataset. If time values greater than this are requested by the simulation, it will cycle back to dataset time=0. The Toffset parameter is the dataset time value that this source initially starts at when simulation time=0. This allows different instances of this source to effectively create different waveforms by starting at different points in the dataset. The Tscale parameter is the scaling applied to the simulator time to get the dataset time. A number greater than 1 speeds up the waveform, increasing the apparent frequency and bandwidth of the stored waveform The relationship between the dataset time, Tds, and the actual simulation time, time, is $$Tds = time, \quad Tmax = 0 \tag{5-1}$$ $$Tds = (Toffset + rem(Tscale \times time, Tmax), Tmax != 0)$$ (5-2) with $$rem(x, y) = \left(x - int(\frac{x}{y}) \times y\right)$$ the modulo remainder function (5-3) It is possible to use a negative Tscale factor to time-reverse a waveform, although Toffset must be set to greater than Tscale × Tstop, to avoid using a negative number in the rem() function. 5. Refer to the DataAccessComponent documentation for a through description of the different interpolation options available for ItDataset. ### ItExp (Current Source, Exponential Decay) # Symbol #### **Parameters** I Low = initial current I High = pulse current Delay1 = rise delay time Tau1 = rise time constant Delay2 = fall time delay Tau2 = fall time constant ### Range of Usage Delay $1 \ge 0$ Tau1 \geq 0 $Delay2 \ge 0$ $Tau2 \ge 0$ ### Notes/Equations/References 1. If Tau1 or Tau2 = 0, it is replaced by MaxTimeStep from the transient simulation, or by Step from the envelope simulation. In SPICE, the equivalent to this source is a current source with the exponential waveform argument EXP and its parameters. 2. The current is given by: $$\begin{split} I &= I_Low \quad 0 \leq \mathsf{t} \leq Delay I \\ I &= I_Low + (I_High - I_Low) \times \begin{bmatrix} \frac{-(t-Delay1)}{Tau1} \end{bmatrix} \quad Delay 1 < \mathsf{t} \leq Delay 2 \\ I &= I_Low + (I_High - I_Low) \times \begin{bmatrix} \frac{-(t-Delay1)}{Tau1} \end{bmatrix} \\ + (I_High - I_Low) \times \begin{bmatrix} \frac{-(t-Delay2)}{Tau2} \end{bmatrix} \quad Delay 2 < \mathsf{t} \end{split}$$ ### ItPulse (Current Source, Pulse with Linear, Cosine or Error Function Edge Shape) Symbol #### **Parameters** None ### Range of Usage N/A ### Notes/Equations/References - 1. ItPulse is a time-periodic pulse-train current source for use with transient or envelope simulations. It is treated as an open circuit in all other simulations. - 2. If Rise or Fall=0, it is replaced by MaxTimeStep from the transient simulation, or Step from the envelope simulation. - 3. If Edge-linear, the rising and falling edge is a linear ramp. In SPICE, the equivalent to this source is a current or voltage source with the pulse waveform argument PULSE and its parameters. The intermediate points are determined by linear interpolation. Values greater than those specified are set by the parameter Period. | Time | Value | |-----------------------------|-------| | 0 | low | | Delay | low | | Delay + Rise | high | | Delay + Rise + Width | high | | Delay + Rise + Width + Fall | low | | Period | low | If Edge=erf, instead of the rise and fall portions being linear ramps, this source generates a pulse based on the error function, giving a different shape to the rising and falling edges. By not having abrupt changes in slope, the pulse shape is more realistic and its frequency spectrum decreases more rapidly. For the error function pulse, the rise and fall time define the total transition period and the maximum slope is greater than (I High – I Low)/Rise. (See Figure 5-1.) This source uses 1-erfc (x), (-2 < x < 2) to generate the transition region and has a peak slope that is approximately 2.25 times the linear rise time. Due to the faster slope, the 3db bandwidth of the output pulse are larger for a given rise time. The shape of the waveform is shown in Figure 5-2; the intermediate points during rise and fall time are determined by interpolation. Figure 5-1. ItPulse Waveforms with Different Edges If Edge=cosine, this source generates cosine-shaped rising and falling edges. By not having abrupt changes in slope, the pulse shape is more realistic and its frequency spectrum decreases more rapidly. For the cosine pulse, the rise and fall time define the total transition period and the maximum slope is greater than (*I_High-I_Low*)/Rise. (See Figure 5-1.) ### ItPWL (Current Source, Piecewise Linear) ### Symbol #### **Parameters** I Tran = pwl (time, time-current pairs) or pwlr (time, Ncycles, time-current pairs) ### Range of Usage N/A - 1. The piecewise linear current versus time data are specified with a pwl() function. The syntax for pwl is pwl(time, T_i , I_i , ...). Each pair of values (T_i , I_i) specifies that at time = T_i the current is I_i. The value of the source at intermediate values of time is determined by using linear interpolation on the input values. - In SPICE, the equivalent to this source is a current source with the piecewise linear waveform argument PWL and its parameters. - 2. If the piecewise linear waveform needs to be repeated for several cycles, a pwlr() function can be used. The syntax for pwlr() is pwlr(time, N_{cvcles}, T_i, I_j, ...) where Ncycles is the number of cycles to be repeated. ### ItSFFM (Current Source, Decaying Single-Frequency FM Wave) ### Symbol #### **Parameters** Idc = initial current offset, in amperes Amplitude = sinusoidal wave amplitude, in amperes CarrierFreq = carrier frequency, in hertz ModIndex = modulation index SignalFreq = signal frequency, in hertz ### Range of Usage N/A ### Notes/Equations/References - 1. In SPICE, the equivalent to this source is a current source with the single-frequency FM source waveform argument SFFM and its parameters. - 2. The shape of the waveform is described in the following equation. Idc + Amplitude \times (sin(2 π CarrierFreq \times time) + ModIndex $sin(2\pi SignalFreq \times time)$) $Iac + A \times sin(2\pi f_c t + \alpha \times sin 2\pi f_s t)$ ### ItSine (Current Source, Decaying Sine Wave) ### Symbol #### **Parameters** Idc = initial current offset Amplitude = sinusoidal wave amplitude Freq = sinusoidal wave frequency Delay = time delay Damping = damping factor Phase = initial phase ### Range of Usage Freq > 0 Delay ≥ 0 ### Notes/Equations/References - 1. ItSine defines an ac sinusoidal current source, at a specified frequency and phase, including its turn-on characteristics for use with transient analysis. In SPICE, the equivalent to this source is a current source with the sinusoidal waveform argument SIN and its parameters. - 2. ItSine has a value of [Idc + Amplitude * sin(phase)] from time t = 0, until t=Delay. It then becomes an exponentially damped sine wave described by $$I = Idc + Amplitude \times \sin \left[2 \left(\pi \times \left(Freq \left((t - Delay) - \frac{Phase}{2\pi} \right) \right) \right) \right] e^{-(t - Delay) \times Damping}$$ where t is time. ### **ItStep (Current Source, Step)** ### **Symbol** #### **Parameters** I Low = initial current I_High = pulse current Delay = delay time Rise = rise time ### Range of Usage N/A ### Notes/Equations/References 1. In SPICE, the equivalent to this source is a current or voltage source with the step waveform argument STEP and its parameters. ### ItUserDef (Current Source, User-Defined) ### Symbol #### **Parameters** I Tran = transient current Idc = dc current Iac = ac current ### Range of Usage N/A ### Notes/Equations/References - 1. Typically, I Tran is assigned an equation. This equation can be defined as a function of time by using the program reserved variable time in it. As the value of time is swept in transient or envelope simulation, the amplitude of the current source will take on the value of the equation. - 2. Note that a variable or equation is unitless. However, the value of I Tran as given by the result of a variable or equation will be assumed to be in amperes. The value of *time* will be the current simulation time in seconds - 3. There are several built-in functions that implement the standard SPICE sources, such as pwl and pulse. For a transient analysis, the ItUserDef source current is the sum of the value specified in the Idc and I Tran parameters. ### Example ``` it = pwl (time, 0, 0, 1, 10ns, 1, 15ns, 0) + damped sin (time) ``` ### **V_DC (DC Voltage Source)** ### **Symbol** #### **Parameters** Vdc = dc voltage, in volts Vac = ac voltage, in volts; value used for ac analysis only SaveCurrent = flag to save branch current ### Range of Usage N/A ### Notes/Equations/References 1. V_DC can be used in all simulations. When not in use, it is treated as a short circuit. ### VtBitSeq (Voltage Source, Pseudo Random Pulse Train Defined at Continuous Time by Bit Sequence) ### Symbol #### **Parameters** Vlow = minimum
voltage level Vhigh = maximum voltage level Rate = bit rate Rise = rise time of pulse Fall = fall time of pulse BitSeq = bit sequence SaveCurrent = save branch current: YES, NO ### Range of Usage N/A ### Notes/Equations/References 1. BitSeq allows you to vary the waveform of a pulse: an arbitrary bit pattern such as 101010 (default), or considerably longer and more varied, such as 11100001111101. When the end of the sequence is reached, the sequence is repeated. A specification of 1 sets voltage to Vhigh, 0 sets it to Vlow. ### VtDataset (Voltage Source, Time Domain Waveform Defined in Dataset) ### Symbol #### **Parameters** Dataset = dataset name Expression = dataset variable or expression Freq = carrier frequency Gain = apply to dataset values; may be complex and time varying Tmax = maximum dataset time to use Toffset = initial dataset time offset Tscale = time speedup scaling factor Vdc = dc offset voltage Interpolation = interpolation method SaveCurrent = save branch current: YES, NO ### Range of Usage N/A ### Notes/Equations/References - 1. This data-based, time-domain waveform voltage source is defined by a time domain dataset variable. The dataset variable must have time as its independent swept axis. This source can be used in transient or envelope simulation. - 2. The carrier frequency defined by the Freq parameter is independent of the dataset. For envelope simulation, the Freq parameter identifies the closest analysis frequency. If the frequency is not close enough to an analysis frequency, a warning is issued and the source voltage is set to zero for that analysis. - 3. If Tmax is not given, the simulation Tstop must not exceed the time range of the stored variable. The output voltage at a given time is the interpolated dataset variable value at that time multiplied by the Gain parameter, evaluated at that time value. The dataset interpolation, if needed, is performed using linear or spline interpolation of the real and imaginary values. The Gain parameter can be complex and time varying. When this source represents a baseband signal (transient or the baseband part of an envelope signal), then only the real part of the signal is generated. For non-baseband signals this output voltage is the complex envelope at the specified carrier frequency. The dataset variable and Gain parameter may be real, even for non-baseband signals, in which case they are simply defining the amplitude modulation of the carrier. - 4. If Tmax is given, this source also allows the time axis to be scaled and will re-cycle through the dataset as many times as is necessary. This allows a single waveform that was captured, either by measurements or by simulation, and stored into a dataset to be used in different simulations with different time scales, and be translated to different carrier frequencies and converted into an indefinitely long, periodic waveform. The Tmax parameter is the maximum dataset time value to use from the dataset. If time values greater than this are requested by the simulation, it will cycle back to dataset time=0. The Toffset parameter is the dataset time value that this source initially starts at when simulation time=0. This allows different instances of this source to effectively create different waveforms by starting at different points in the dataset. The Tscale parameter is the scaling applied to the simulator time to get the dataset time. A number greater than 1 speeds up the waveform, increasing the apparent frequency and bandwidth of the stored waveform. The relationship between the dataset time, Tds, and the actual simulation time, time, is $$Tds = time, \quad Tmax = 0 \tag{5-4}$$ $$Tds = (Toffset + rem(Tscale \times time, Tmax), Tmax != 0)$$ (5-5) with $$rem(x, y) = \left(x - int(\frac{x}{y}) \times y\right)$$ the modulo remainder function (5-6) It is possible to use a negative Tscale factor to time-reverse a waveform, although Toffset must be set to greater than Tscale × Tstop, to avoid using a negative number in the rem() function. 5. Refer to the DataAccessComponent documentation for a through description of the different interpolation options available for VtDataset. ### VtExp (Voltage Source, Exponential Decay) ### Symbol #### **Parameters** Vlow = initial voltage Vhigh = peak voltage Delay1 = rise time delay Tau1 = rise time constant Delay2 = fall time delay Tau2 = fall time constant SaveCurrent = save branch current: YES, NO ### Range of Usage Delay $1 \ge 0$ Delay $2 \ge 0$ $Tau1 \ge 0$ Tau2 > 0 - 1. In SPICE, the equivalent to this source is a voltage source with the exponential waveform argument EXP and its parameters. If Tau1 or Tau2 = 0, it is replaced by MaxTimeStep from the transient simulation or Step from the envelope simulation. - 2. The source output voltage, V, is given by the following: $$t1 = \frac{t - Delay1}{Tau1} \qquad t2 = \frac{t - Delay2}{Tau2}$$ ### Case 1: Delay1 < Delay2 $$V = \begin{cases} Vlow & 0 \le t \le Delay1 \\ Vlow + (Vhigh - Vlow) \times (1 - \exp(-t1)) & Delay1 \le t \le Delay2 \\ Vlow + (Vhigh - Vlow) \times (1 - \exp(-t1)) + (Vlow - Vhigh) \times (1 - \exp(-t2)) & Delay2 < t \end{cases}$$ ### Case 2: Delay2 < Delay1 $$V = \begin{cases} Vlow & 0 \le t \le Delay2 \\ Vlow + (Vlow - Vhigh) \times (1 - \exp(-t2)) & Delay2 \le t \le Delay1 \\ Vlow + (Vhigh - Vlow) \times (1 - \exp(-t1)) + (Vlow - Vhigh) \times (1 - \exp(-t2)) & Delay1 < t \end{cases}$$ ### VtImpulseDT (Voltage Source, Impulse Train Defined at Discrete Time Steps) ### Symbol #### **Parameters** None ### Range of Usage N/A - 1. This source is used in envelope and transient simulations. - 2. Both the delay and the period are rounded to the nearest integer multiple of the analysis time step. The impulse source is in the high state for only one time sample each period, with an open circuit voltage equal to Vhigh and an output impedance set by Rout. - 3. It is possible to set Vlow to a voltage more positive than Vhigh in order to generate a negative-going impulse train, as shown in Figure 5-3. Figure 5-3. Negative-Going Impulse Train ### VtLFSR DT (Voltage Source, Pseudo-Random Pulse Train Defined at Discrete Time Steps) ### Symbol #### **Parameters** Vlow = minimum voltage level Vhigh = maximum voltage level Rate = bit rate Delay = initial time delay to first transition Taps = bits used to generate feedback Seed = initial value loaded into the shift register Rout = output resistance ### Range of Usage N/A ### Notes/Equations/References - 1. This is a discrete-time source for use in envelope and transient simulations. The pulse width must be is an integer number of simulation time steps. - 2. This component can be used to generate PN sequences with user-defined recurrence relations - 3. The linear feedback shift register component can be used to generate PN sequences with user-defined recurrence relations. The input to the LFSR is a binary sequence. Figure 5-4 illustrates an LFSR model. Data is shifted to the right in the shift register. The length of the shift register is r. The numbers a(1), a(2), ..., a(r) are the binary feedback coefficients specified by Taps. The shift register length r is defined by the largest value in Taps. For example, a Taps of 7 3 2 1 results in a shift register length of 7; the maximum value allowed in Taps is 31, which results in a maximum shift register length of 31. Figure 5-4. LFSR Model The initial contents of the shift are specified by the value of Seed. The maximum meaningful value for Seed is $(2^{**r})^{-1}$ for a specific Taps. The maximum Seed value allowed is $(2^{**31})^{-1}$. The following equations describe the operation of LFSR. $$D(n) = \left[\sum_{k=1}^{r} a(k)D(n-k)\right] \mod 2 \quad \text{for } n \ge 1$$ where $$D(0) = Seed_2(0)$$ $D(-1) = Seed_2(1)$. . . $D(1-r) = Seed_2(r-1)$ and $$Seed = \sum_{k > 0} Seed_2(k)2^k$$ where Seed₂(k) $$\in$$ {0,1} for $0 \le k < r$. Example: Let Seed=2, and r=7 Then $Seed_{2}(0) = 0$ $Seed_{2}(1) = 1$ $Seed_{2}(2) = 0$ $Seed_{2}(6) = 0$ Therefore, $$D(0) = Seed_2(0) = 0$$ $$D(-1) = Seed_2(1) = 1$$ $$D(-2) = Seed_2(2) = 0$$ $$D(-6) = Seed_2(6) = 0$$ 4. The binary feedback coefficients are specified by Taps, which is a list of feedback coefficients. The coefficients are specified by listing the locations where the feedback coefficients equal 1. For example, the recurrence relation $$D(n) = (D(n-7) + D(n-3) + D(n-2) + D(n-1)) \mod 2$$ is specified by the list [7, 3, 2, 1]. Table 5-1 is an extensive list of feedback coefficients for linear feedback shift registers showing one or more alternate feedback connections for a given number of stages. Table 5-1. Feedback Connections for Linear m-Sequences * | Number
of
Stages | Code Length | Maximal Taps | |------------------------|-------------|--------------| | 2 | 3 | [2, 1] | | 3 | 7 | [3, 1] | | 4 | 15 | [4, 1] | Table 5-1. Feedback Connections for Linear m-Sequences (continued)* | Number
of | | | |--------------|-------------|---| | Stages | Code Length | Maximal Taps | | 5 | 31 | [5, 2] [5, 4, 3, 2] [5, 4, 2, 1] | | 6 | 63 | [6, 1] [6, 5, 2, 1,] [6, 5, 3, 2,] | | 7 | 127 | [7, 1] [7, 3] [7, 3, 2, 1,] [7, 4, 3, 2,] [7, 6, 4, 2] [7, 6, 3, 1] [7, 6, 5, 2] | | 8 | 255 | [7, 6, 5, 4, 2, 1] [7, 5, 4, 3, 2, 1]
[8, 4, 3, 2] [8, 6, 5, 3] [8, 6, 5, 2] [8, 5, 3, 1] [8, 6, 5, 1] [8, 7, 6, 5, 2, 1] [8, 6, 4, 3, 2, 1] | | 9 | 511 | [9, 4] [9, 6, 4, 3] [9, 8, 5, 4] [9, 8, 4, 1] [9, 5, 3, 2] [9, 8, 6, 5] [9, 8, 7, 2] | | 10 | 1023 | [9, 6, 5, 4, 2] [9, 7, 6, 4, 3, 1] [9, 8, 7, 6, 5, 3]
[10, 3] [10, 8, 3, 2] [10, 4, 3, 1] [10, 8, 5, 1] [10, 8,
5, 4] [10, 9, 4, 1]
[10, 8, 4, 3] [10, 5, 3, 2] [10, 5, 2, 1] [10, 9, 4, 2] | |
11 | 2047 | [11, 1] [11, 8, 5, 2] [11, 7, 3, 2] [11, 5, 3, 5] [11, 10, 3, 2] [11, 6, 5, 1] | | 12 | 4095 | [11, 5, 3, 1] [11, 9, 4, 1] [11, 8, 6, 2] [11, 9, 8, 3]
[12, 6, 4, 1] [12, 9, 3, 2] [12, 11, 10, 5, 2, 1] [12, 11, 6, 4, 2, 1] | | 13 | 8191 | [12, 11, 9, 7, 6, 5] [12, 11, 9, 5, 3, 1] [12, 11, 9, 8, 7, 4] [12, 11, 9, 7, 6, 5] [12, 9, 8, 3, 2, 1] [12, 10, 9, 8, 6, 2] [13, 4, 3, 1] [13, 10, 9, 7, 5, 4] [13, 11, 8, 7, 4, 1] [13, 12, 8, 7, 6, 5] [13, 9, 8, 7, 5, 1] [13, 12, 6, 5, 4, 3] [13, 12, 11, 9, 5, 3] [13, 12, 11, 5, 2, 1] [13, 12, 9, 8, 4, 2] [13, 8, 7, 4, 3, 2] | | 14 | 16,383 | [13, 12, 9, 8, 4, 2] [13, 8, 7, 4, 3, 2]
[14, 12, 2, 1] [14, 13, 4, 2] [14, 13, 11, 9] [14, 10, 6, 1] [14, 11, 6, 1]
[14, 12, 11, 1] [14, 6, 4, 2] [14, 11, 9, 6, 5, 2] [14, 13, 6, 5, 3, 1]
[14, 13, 12, 8, 4, 1] [14, 8, 7, 6, 4, 2] [14, 10, 6, 5, 4, 1] [14, 13, 12, 7, 6, 3]
[14, 13, 11, 10, 8, 3] | | 15 | 32,767 | [15, 13, 10, 9] [15, 13, 10, 1] [15, 14, 9, 2] [15, 1] [15, 9, 4, 1] [15, 12, 3, 1] [15, 10, 5, 4] [15, 10, 5, 4, 3, 2] [15, 11, 7, 6, 2, 1] [15, 7, 6, 3, 2, 1] [15, 10, 9, 8, 5, 3] [15, 12, 5, 4, 3, 2] [15, 10, 9, 7, 5, 3] [15, 13, 12, 10] [15, 13, 10, 2] [15, 12, 9, 1] [15, 14, 12, 2] [15, 13, 9, 6] [15, 7, 4, 1] [15, 4] [15, 13, 7, 4] | Table 5-1. Feedback Connections for Linear *m*-Sequences (continued)* | Number | | | |--------------|-------------|--| | of
Stages | Code Length | Maximal Taps | | 16 | 65,535 | [16, 12, 3, 1] [16, 12, 9, 6] [16, 9, 4, 3] [16, 12, 7, | | | | 2] [16, 10, 7, 6] [16, 15, 7, 2] [16, 9, 5, 2] [16, 13, | | | 121.071 | 9, 6] [16, 15, 4, 2] [16, 15, 9, 4] | | 17 | 131,071 | [17, 3] [17, 3, 2] [17, 7, 4, 3] [17, 16, 3, 1] [17, 12, 6, 3, 2, 1] [17, 8, 7, 6, 4, 3] [17, 11, 8, 6, 4, 2] [17, | | | | 9, 8, 6, 4, 1] [17, 16, 14, 10, 3, 2] [17, 12, 11, 8, 5, | | | | 2] | | 18 | 262,143 | [18, 7] [18, 10, 7, 5] [18, 13, 11, 9, 8, 7, 6, 3] [18, | | | | 17, 16, 15, 10, 9, 8, 7] [18, 15, 12, 11, 9, 8, 7, 6] | | 19 | 524,287 | [19, 5, 2, 1] [19, 13, 8, 5, 4, 3] [19, 12, 10, 9, 7, 3] | | | | [19, 17, 15, 14, 13, 12, 6, 1] [19, 17, 15, 14, 13, 9, 8, 4, 2, 1] [19, 16, 13, 11, 19, 9, 4, 1] [19, 9, 8, 7, | | | | 6, 3, [19, 16, 15, 13, 12, 9, 5, 4, 2, 1] [19, 9, 8, 7, 6, 3] [19, 16, 15, 13, 12, 9, 5, 4, 2, 1] [19, 18, 15, | | | | 14, 11, 10, 8, 5, 3, 2] [19, 18, 17, 16, 12, 7, 6, 5, 3, | | | | [1] | | 20 | 1, 048,575 | [20, 3] [20, 9, 5, 3] [20, 19, 4, 3] [20, 11, 8, 6, 3, | | | | 2] [20, 17, 14, 10, 7, 4, 3, 2] | | 21 | 2,097,151 | [21, 2] [21, 14, 7, 2] [21, 13, 5, 2] [21, 14, 7, 6, 3, | | | | 2] [21, 8, 7, 4, 3, 2] [21, 10, 6, 4, 3, 2] [21, 15, 10, 9, 5, 4, 3, 2] [21, 14, 12, 7, 6, 4, 3, 2] [21, 20, 19, | | | | 18, 5, 4, 3, 2] | | 22 | 4,194,303 | [22,1] [22, 9, 5, 1] [22, 20, 18, 16,6, 4, 2, 1] [22, | | | | 19, 16, 13, 10, 7, 4, 1] [22, 17, 9, 7, 2, 1] [22, 17, | | 22 | 0.200.607 | 13, 12, 8, 7, 2, 1] [22, 14, 13, 12, 7, 3, 2, 1] | | 23 | 8,388,607 | [23, 5] [23, 17, 11, 5] [23, 5, 4, 1] [23, 12, 5, 4] [23, 21, 7, 5] [23, 16, 13, 6, 5, 3] [23, 11, 10, 7, 6, | | | | [23, 21, 7, 3] [23, 10, 13, 0, 3, 3] [23, 11, 10, 7, 0, 5] [23, 15, 10, 9, 7, 5, 4, 3] [23, 17, 11, 9, 8, 5, 4, 5] | | | | 1] [23, 18, 16, 13, 11, 8, 5, 2] | | 24 | 16,777,215 | [24, 7, 2] [24, 4, 3, 1] [24, 22, 20, 18, 16, 14, 11, | | | | 9, 8, 7, 5, 4] [24, 21, 19, 18, 17, 16, 15, 14, 13, 10, | | 2.5 | 22.554.421 | 9, 5, 4, 1] | | 25 | 33,554, 431 | [25, 3] [25, 3, 2, 1] [25, 20, 5, 3] [25, 12, 5, 4] [25, 17, 10, 3, 2, 1] [25, 23, 21, 19, 9, 7, 5, 3] [25, 18, | | | | 12, 11, 6, 5, 4] [25, 20, 16, 11, 5, 3, 2, 1] [25, 12, | | | | 11, 8, 7, 6, 4, 3] | | 26 | 67,108,863 | [26, 6, 2, 1] [26, 22, 21, 16, 12, 11, 10, 8, 5, 4, 3, | | | | 1] | | 27 | 134,217,727 | [27, 5, 2, 1] [27, 18, 11, 10, 9, 5, 4, 3] | | 28 | 268,435,455 | [28, 3] [28, 13, 11, 9, 5, 3] [28, 22, 11, 10, 4, 3] | | | | [28, 24, 20, 16, 12, 8, 4, 3, 2, 1] | Table 5-1. Feedback Connections for Linear *m*-Sequences (continued)* | Number
of
Stages | Code Length | Maximal Taps | |------------------------|-------------------------------------|---| | 29 | 536,870,911 | [29, 2] [29, 20, 11, 2] [29, 13, 7, 2] [29, 21, 5, 2] [29, 26, 5, 2] [29, 19, 16, 6, 3, 2] [29, 18, 14, 6, 3, 2] | | 30 | 1,073,741,823 | [30, 23, 2, 1] [30, 6, 4, 1] [30, 24, 20, 16, 14, 13, 11, 7, 2, 1] | | 31 | 2,147,483,646 | [31, 29, 21, 17] [31, 28, 19, 15] [31, 3] [31, 3, 2, 1] [31, 13, 8, 3] [31, 21, 12, 3, 2, 1] [31, 20, 18, 7, 5, 3] [31, 30, 29, 25] [31, 28, 24, 10] [31, 20, 15, 5, 4, 3] [31, 16, 8, 4, 3, 2] | | 32 | 4,294,967,295 | [32, 22, 2, 1] [32, 7, 5, 3, 2, 1] [32, 28, 19, 18, 16, 14, 11, 10, 9, 6, 5, 1] | | 33 | 8,589,934,591 | [33, 13] [33, 22, 13, 11] [33, 26, 14, 10] [33, 6, 4, 1] [33, 22, 16, 13, 11, 8] | | 61 | 2,305,843,009,213, 693, 951 | [61, 5, 2, 1] | | 89 | 618,970,019,642,690,137,449,562,112 | [89, 6, 5, 3] | ^{*}Reprinted by permission of John Wiley & Sons. From Spread Spectrum Systems, 2nd edition, p. 87, Robert C. Dixon. Copyright © 1984 by John Wiley & Sons, Inc. ### VtOneShot (Voltage Source, Retriggerable Pulse Train) ### Symbol #### **Parameters** Delay = time delay from trigger to pulse start Width = pulse width Vhigh = pulse voltage ### Range of Usage N/A - 1. This source is implemented in FDD for use with transient and envelope simulations. The retriggerable one-shot is a predefined application of the retriggerable source VtRetrig. It outputs a pulse of amplitude Vhigh and specified width and delay after every trigger event. Due to the trigger delay of 1 to 2 time steps, the actual pulse width will be shorter than specified by this same amount, if the one-shot delay is specified to be less than 1 time step. - 2. The trigger input is an infinite impedance, differential input. A trigger event occurs whenever the baseband voltage difference across the two inputs passes through 0.5V with a positive slope. The output impedance is fixed at 50 ohms. # VtPulse (Voltage Source, Pulse with Linear, Cosine, or Error Function Edge Shape) ### **Symbol** #### **Parameters** Vlow = initial voltage Vhigh = pulse voltage Delay = delay time Edge = rising and falling edge type Rise = rise time Fall = fall time Width = pulse width Period = pulse period SaveCurrent = save branch current: YES, NO ### Range of Usage Delay ≥ 0 ; Rise ≥ 0 ; Fall ≥ 0 Width > 0 Width + Rise + Fall \leq Period - 1. This item is a time-periodic rectangular pulse-train voltage source for use with transient and envelope simulation. It is treated as a short circuit in all other simulations. - 2. If Rise or Fall = 0, it is replaced by MaxTimeStep from the transient simulation or Step from the envelope simulation. 3. If Edge=linear, the rising and falling edge is a linear ramp. In SPICE, the equivalent to this source is a current or voltage source with the pulse waveform argument PULSE and its parameters. | Time | Value | |-----------------------------|-------| | 0 | low | | Delay | low | | Delay + Rise | high | | Delay + Rise + Width | high | | Delay + Rise + Width + Fall | low | | Period | low | If Edge=erf, instead of the rise and fall portions being linear ramps, this source generates a pulse based on the error function, giving a different shape to the rising and falling edges. By not having abrupt changes in slope, the pulse shape is more realistic and its frequency spectrum decreases more rapidly. For the error function pulse, the rise and fall time define the total transition period and the maximum slope is greater than (I High – I Low)/Rise. (See Figure 5-5.) This source uses *1-erfc* (x), $(-2 \le x \le 2)$ to generate the transition region and has a peak slope that is approximately 2.25 times the linear rise time. Due to the faster slope, the 3db bandwidth of the output pulse is larger for a given rise time. The shape of the waveform is shown in Figure 5-6; the intermediate points during rise and fall time are determined by interpolation. Figure 5-5. ItPulse Waveforms with Different Edges Figure 5-6. Waveform shape If Edge=cosine, this source generates cosine-shaped rising and falling edges. By not having abrupt changes in slope, the pulse shape is more realistic and its frequency spectrum decreases more rapidly. For the cosine pulse, the rise and fall time define the total transition period and the maximum slope is greater than (I High-I Low)/Rise. (See Figure 5-5.) ### VtPulseDT (Voltage Source, Pulse Train Defined at Discrete Time Steps) ### Symbol #### **Parameters** Vlow = initial voltage Vhigh = pulse voltage Delay = time delay Width = pulse width Period = pulse period Rout = output resistance ### Range of Usage N/A - 1. This source is used in envelope and transient simulations. - 2. Period, Width, and Delay are rounded to the nearest integer multiple of the analysis time step. The pulse width must be an integer number of simulation time steps. The pulse source is in the high state for a time interval equal to Width, during which it has an open circuit output voltage equal to Vhigh. The output impedance is set by Rout. - 3. As with the impulse source, Vlow can be set to a voltage more positive than Vhigh in order to generate a negative-going pulse train. - 4. The use of a discrete time pulse source, as opposed to a standard pulse source, guarantees that there is no timing jitter in the pulse edges due to the waveform being sampled asynchronously by a fixed time interval simulation. By setting the period, width or delay equal to multiples of the time step variable, the source can be set up to track the analysis time step control, if desired. ### VtPWL (Voltage Source, Piecewise Linear) ### **Symbol** #### **Parameters** V_Tran = time-voltage pairs: pwl(time, time-voltage pairs)
or pwlr(time, Ncycles, time-voltage pairs) SaveCurrent = save branch current: YES, NO ### Range of Usage N/A - 1. The piecewise linear voltage versus time data are specified with a pwl() function. The syntax for pwl is pwl(time, T_i , V_i , ...) . Each pair of values (T_i, V_i) specifies that at time = T_i , the voltage is V_i . The value of the source at intermediate values of time is determined by using linear interpolation on the input values. - 2. In SPICE, the equivalent to this source is a voltage source with the piecewise linear waveform argument PWL and its parameters. - 3. If the piecewise linear waveform is to be repeated for several cycles, a pwlr() function can be used. The syntax for pwlr() is pwlr(time, N_{cycles}, T_i, V_i, ...) where Ncycles is the number of cycles to be repeated. ### VtRetrig (Voltage Source, Retriggerable, User-Defined Waveform) ### Symbol #### **Parameters** V = user-defined waveform equation Rout = output resistance Thresh = trigger threshold on rising edge ### Range of Usage N/A - 1. This source is used in envelope and transient simulations. - 2. This retriggerable source allows you to use an equation to describe a baseband waveform segment; the waveform segment is then output every time an input trigger occurs. The waveform is typically described in terms of the time since the last trigger event, which is (time – tt(1)). For example, the default equation simply generates a value equal to 1 until 1 msec after the trigger event. - Figure 5-7 shows a more complicated example, where a function way() is defined to create a truncated sinc() waveform, which is then generated following every trigger event. This wav() example function also uses the FDD function tn() (the trigger count number) to linearly increase the sinc() waveform bandwidth with each new trigger. Any of the time-domain equation capabilities of the simulator can be used to define this waveform, including reading data from a dataset or using a random time variable. The output voltage of the source, prior to any triggers, is 0.0. The output impedance of the source is set by Rout. - 3. The trigger input is an infinite impedance, differential input. The trigger event is determined whenever the baseband voltage difference across the two inputs passes through the trigger threshold voltage with a positive slope. Due to the delay in the trigger detection, the minimum value of (time - tt(1)) will be between 1 and 2 time steps. There is fixed delay of - one time step in addition to the time between the interpolated trigger event and the next simulated time point. - 4. Because the trigger input and the output voltage are baseband only signals, this model works equally well in either transient or circuit envelope simulations. Figure 5-7. Truncated sinc() waveform ### VtSFFM (Voltage Source, Single Frequency FM, SFFM Wave) ### Symbol #### **Parameters** Vdc = initial voltage offset, in volts Amplitude = amplitude of signal, in volts CarrierFreq = carrier frequency, in hertz ModIndex = modulation index, in hertz SignalFreq = signal frequency, in hertz SaveCurrent = save branch current: YES, NO ### Range of Usage N/A ### Notes/Equations/References - 1. In SPICE, the equivalent to this source is a voltage source with the single-frequency FM source waveform argument SFFM and its parameters. - 2. The shape of the waveform is described in the following equation. Vout = Vdc + Amplitude $\times \sin(2 \times \pi \times \text{CarrierFreq} \times \text{time} + \text{ModIndex} \times \sin(2 \times \pi \times \text{CarrierFreq}))$ $(2 \times \pi \times SignalFreq \times time))$ ### VtSine (Voltage Source, Decaying Sine Wave) ### **Symbol** #### **Parameters** Vdc = initial voltage offset Amplitude = amplitude of sinusoidal wave Freq = frequency of sinusoidal wave Delay = time delay Damping = damping factor Phase = initial phase SaveCurrent = save branch current: YES, NO ### Range of Usage Freq > 0 Delay ≥ 0 ### Notes/Equations/References - 1. In SPICE, the equivalent to this source is a voltage source with the sinusoidal waveform argument sin and its parameters. VtSine defines an ac sinusoidal voltage source, at a specified frequency and phase, including its turn-on characteristics for use with transient analysis. - 2. VtSine has a value of [Vdc + Amplitude * sin(phase)] from time t = 0 until t = delay. Then the voltage becomes an exponentially damped sine wave described by $$V = Vdc + Amplitude \times \sin \left[2\pi \times \left(Freq\left((t - Delay) - \frac{Phase}{2\pi} \right) \right) \right] \times e^{-(t - Delay) \times Damping}$$ where t is time. ### VtStep (Voltage Source, Step) ### Symbol #### **Parameters** Vlow = initial voltage Vhigh = pulse voltage Delay = delay time Rise = rise time SaveCurrent = save branch current: YES, NO ### Range of Usage N/A ### Notes/Equations/References 1. In SPICE, the equivalent to this source is a voltage source with the step waveform argument STEP and its parameters. ### VtUserDef (Voltage Source, User-Defined) ### Symbol #### **Parameters** V Tran = transient voltage Vdc = dc voltage, in volts Vac = ac voltage, in volts SaveCurrent = save branch current: YES, NO ### Range of Usage N/A ### **Notes/Equations/References** - 1. Typically, V Tran is assigned an equation. This equation can be defined as a function of time by using the program reserved variable time in it. As the value of time is swept in transient or envelope simulation, the amplitude of the voltage source will take on the value of the equation. - 2. A variable or equation is unitless. However, the value of V Tran as given by the result of a variable or equation will be assumed to be in volts. The value of time will be the current simulation time in seconds. - 3. There are several built-in functions that implement the standard SPICE sources, such as pwl and pulse. For a transient analysis, the VtUserDef source voltage is the sum of the value specified in the Vdc and V Tran parameters. ### Example: ``` vt = pwl (time, Ons, O, 1ns, 1, 2ns, -2) X damped sin (time) ``` ## Index ``` S sources controlled, 1-1 frequency domain, 2-1 modulated, 3-1 noise, 4-1 time domain, 5-1 ```